Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_3_a3, author = {Guo Wenbin and E. V. Legchekova and A. N. Skiba}, title = {Finite {Groups} in {Which} {Every} {3-Maximal} {Subgroup} {Commutes} with {All} {Maximal} {Subgroups}}, journal = {Matemati\v{c}eskie zametki}, pages = {350--359}, publisher = {mathdoc}, volume = {86}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a3/} }
TY - JOUR AU - Guo Wenbin AU - E. V. Legchekova AU - A. N. Skiba TI - Finite Groups in Which Every 3-Maximal Subgroup Commutes with All Maximal Subgroups JO - Matematičeskie zametki PY - 2009 SP - 350 EP - 359 VL - 86 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a3/ LA - ru ID - MZM_2009_86_3_a3 ER -
%0 Journal Article %A Guo Wenbin %A E. V. Legchekova %A A. N. Skiba %T Finite Groups in Which Every 3-Maximal Subgroup Commutes with All Maximal Subgroups %J Matematičeskie zametki %D 2009 %P 350-359 %V 86 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a3/ %G ru %F MZM_2009_86_3_a3
Guo Wenbin; E. V. Legchekova; A. N. Skiba. Finite Groups in Which Every 3-Maximal Subgroup Commutes with All Maximal Subgroups. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 350-359. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a3/
[1] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | MR | Zbl
[2] Z. Janko, “Finite groups with invariant fourth maximal subgroups”, Math. Z., 82 (1963), 82–89 | MR | Zbl
[3] M. Suzuki, “The nonexistence of a certain type of simple groups of odd order”, Proc. Amer. Math. Soc., 8:2 (1957), 686–695 | MR | Zbl
[4] Z. Janko, “Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen”, Math. Z., 79 (1962), 422–424 | MR | Zbl
[5] V. A. Belonogov, “Konechnye razreshimye gruppy s nilpotentnymi 2-maksimalnymi podgruppami”, Matem. zametki, 3:1 (1968), 21–32 | MR | Zbl
[6] V. N. Semenchuk, “Razreshimye gruppy so vtorymi maksimalnymi sverkhrazreshimymi podgruppami”, Voprosy algebry, Vyp. 1, Universitetskoe, Minsk, 1985, 86–96 | MR | Zbl
[7] T. M. Gagen, Z. Janko, “Finite simple groups with nilpotent third maximal subgroups”, J. Austral. Math. Soc., 6:4 (1966), 466–469 | MR | Zbl
[8] R. K. Agrawal, “Generalized center and hypercenter of a finite group”, Proc. Amer. Math. Soc., 58 (1976), 13–21 | MR | Zbl
[9] L. Ya. Polyakov, “Konechnye gruppy s perestanovochnymi podgruppami”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1966, 75–88 | MR | Zbl
[10] X. Y. Guo, K. P. Shum, “Cover-avoidance properties and the structure of finite groups”, J. Pure Appl. Algebra, 181:2–3 (2003), 297–308 | MR | Zbl
[11] Li Shirong, “Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups”, Math. Proc. R. Ir. Acad., 100A:1 (2000), 65–71 | MR | Zbl
[12] W. Guo, K. P. Shum, A. N. Skiba, “$X$-semipermutable subgroups of finite groups”, J. Algebra, 315:1 (2007), 31–41 | MR | Zbl
[13] Baojun Li, A. N. Skiba, “New characterizations of finite supersoluble groups”, Sci. China Ser. A, 51:5 (2008), 827–841 | MR | Zbl
[14] W. Guo, H. V. Legchekova, A. N. Skiba, “On finite groups in which every 2-maximal subgroup permutes with all 3-maximal subgroups”, Comm. Algebra (to appear)
[15] W. Guo, H. V. Legchekova, A. N. Skiba, On finite groups in which every 2-maximal subgroup permutes with all 3-maximal subgroups, Preprint No 10, Gomelskii gos. un-t im. Frantsiska Skoriny, Gomel, 2008
[16] A. N. Skiba, “$H$-permutable subgroups”, Izv. Gomelsk. gos. un-ta im. F. Skoriny, 2003, no. 4, 37–39 | Zbl
[17] L. A. Shemetkov, Formatsii konechnykh grupp, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl
[18] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[19] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006