Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_2_a8, author = {I. V. Prokhorov}, title = {On the {Structure} of the {Continuity} {Set} of the {Solution} to a {Boundary-Value} {Problem} for the {Radiation} {Transfer} {Equation}}, journal = {Matemati\v{c}eskie zametki}, pages = {256--272}, publisher = {mathdoc}, volume = {86}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a8/} }
TY - JOUR AU - I. V. Prokhorov TI - On the Structure of the Continuity Set of the Solution to a Boundary-Value Problem for the Radiation Transfer Equation JO - Matematičeskie zametki PY - 2009 SP - 256 EP - 272 VL - 86 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a8/ LA - ru ID - MZM_2009_86_2_a8 ER -
%0 Journal Article %A I. V. Prokhorov %T On the Structure of the Continuity Set of the Solution to a Boundary-Value Problem for the Radiation Transfer Equation %J Matematičeskie zametki %D 2009 %P 256-272 %V 86 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a8/ %G ru %F MZM_2009_86_2_a8
I. V. Prokhorov. On the Structure of the Continuity Set of the Solution to a Boundary-Value Problem for the Radiation Transfer Equation. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 256-272. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a8/
[1] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1973 | MR | Zbl
[2] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh. T. 1. Odnokratnoe rasseyanie i teoriya perenosa. T. 2. Mnogokratnoe rasseyanie, turbulentnost, sherokhovatye poverkhnosti i distantsionnoe zondirovanie, Mir, M., 1981
[3] H. W. Jensen, S. R. Marschner, M. Levoy, P. Hanrahan, “A practical model for subsurface light transport”, Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, 2001, 511–518 | DOI
[4] H. W. Jensen, Realistic Image Synthesis Using Photon Mapping, With a foreword by Pat Hanrahan, A. K. Peters, LTD, Natick, MA, 2001 | MR | Zbl
[5] I. V. Prokhorov, “Kraevaya zadacha teorii perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differents. uravneniya, 36:6 (2000), 848–851 | MR | Zbl
[6] I. V. Prokhorov, “O razreshimosti kraevoi zadachi teorii perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izv. RAN. Ser. matem., 67:6 (2003), 169–192 | MR | Zbl
[7] I. V. Prokhorov, I. P. Yarovenko, T. V. Krasnikova, “An extremum problem for the radiation transfer equation”, J. Inverse Ill-Posed Probl., 13:4 (2005), 365–382 | MR | Zbl
[8] V. S. Vladimirov, Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits, Tr. MIAN, 61, Izd-vo AN SSSR, M., 1961, 158 pp. | MR
[9] T. A. Germogenova, Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl
[10] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Transport Equation and Tomography, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2002 | MR | Zbl
[11] G. P. Akilov, B. M. Makarov, V. P. Khavin, Elementarnoe vvedenie v teoriyu integrala, LGU, L., 1969