On the Structure of the Continuity Set of the Solution to a Boundary-Value Problem for the Radiation Transfer Equation
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 256-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the continuity properties of the solution to a boundary-value problem for the radiation transfer equation with generalized conjugation conditions at the interface of media. We establish the solvability of the boundary-value problem and obtain estimates of the maximum principle type. It is shown that the Fresnel component in the conjugation operator significantly complicates the structure of the set on which the solution of the boundary-value problem is continuous.
Keywords: radiation transfer equation, boundary-value problem, conjugation operator, Fresnel reflection, Snell's law, index of refraction.
Mots-clés : diffuse reflection, reflection indicatrix
@article{MZM_2009_86_2_a8,
     author = {I. V. Prokhorov},
     title = {On the {Structure} of the {Continuity} {Set} of the {Solution} to a {Boundary-Value} {Problem} for the {Radiation} {Transfer} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {256--272},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a8/}
}
TY  - JOUR
AU  - I. V. Prokhorov
TI  - On the Structure of the Continuity Set of the Solution to a Boundary-Value Problem for the Radiation Transfer Equation
JO  - Matematičeskie zametki
PY  - 2009
SP  - 256
EP  - 272
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a8/
LA  - ru
ID  - MZM_2009_86_2_a8
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%T On the Structure of the Continuity Set of the Solution to a Boundary-Value Problem for the Radiation Transfer Equation
%J Matematičeskie zametki
%D 2009
%P 256-272
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a8/
%G ru
%F MZM_2009_86_2_a8
I. V. Prokhorov. On the Structure of the Continuity Set of the Solution to a Boundary-Value Problem for the Radiation Transfer Equation. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 256-272. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a8/

[1] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1973 | MR | Zbl

[2] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh. T. 1. Odnokratnoe rasseyanie i teoriya perenosa. T. 2. Mnogokratnoe rasseyanie, turbulentnost, sherokhovatye poverkhnosti i distantsionnoe zondirovanie, Mir, M., 1981

[3] H. W. Jensen, S. R. Marschner, M. Levoy, P. Hanrahan, “A practical model for subsurface light transport”, Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, 2001, 511–518 | DOI

[4] H. W. Jensen, Realistic Image Synthesis Using Photon Mapping, With a foreword by Pat Hanrahan, A. K. Peters, LTD, Natick, MA, 2001 | MR | Zbl

[5] I. V. Prokhorov, “Kraevaya zadacha teorii perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differents. uravneniya, 36:6 (2000), 848–851 | MR | Zbl

[6] I. V. Prokhorov, “O razreshimosti kraevoi zadachi teorii perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izv. RAN. Ser. matem., 67:6 (2003), 169–192 | MR | Zbl

[7] I. V. Prokhorov, I. P. Yarovenko, T. V. Krasnikova, “An extremum problem for the radiation transfer equation”, J. Inverse Ill-Posed Probl., 13:4 (2005), 365–382 | MR | Zbl

[8] V. S. Vladimirov, Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits, Tr. MIAN, 61, Izd-vo AN SSSR, M., 1961, 158 pp. | MR

[9] T. A. Germogenova, Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[10] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Transport Equation and Tomography, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2002 | MR | Zbl

[11] G. P. Akilov, B. M. Makarov, V. P. Khavin, Elementarnoe vvedenie v teoriyu integrala, LGU, L., 1969