On Some Properties of Modular Polynomials for the Lambda Function
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 237-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the existence of modular polynomials for the lambda function and present an asymptotic formula for the maximum of the moduli of their coefficients.
Keywords: lambda function, Farey series, algebraic number, holomorphic function.
Mots-clés : modular polynomial, theta constant, Galois group
@article{MZM_2009_86_2_a7,
     author = {V. D. Mirokov},
     title = {On {Some} {Properties} of {Modular} {Polynomials} for the {Lambda} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {237--255},
     year = {2009},
     volume = {86},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a7/}
}
TY  - JOUR
AU  - V. D. Mirokov
TI  - On Some Properties of Modular Polynomials for the Lambda Function
JO  - Matematičeskie zametki
PY  - 2009
SP  - 237
EP  - 255
VL  - 86
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a7/
LA  - ru
ID  - MZM_2009_86_2_a7
ER  - 
%0 Journal Article
%A V. D. Mirokov
%T On Some Properties of Modular Polynomials for the Lambda Function
%J Matematičeskie zametki
%D 2009
%P 237-255
%V 86
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a7/
%G ru
%F MZM_2009_86_2_a7
V. D. Mirokov. On Some Properties of Modular Polynomials for the Lambda Function. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 237-255. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a7/

[1] K. Mahler, “On the coefficients of transformation polynomials for the modular function”, Bull. Austral. Math. Soc., 10 (1974), 197–218 | MR | Zbl

[2] P. Cohen, “On the coefficients of the transformation polynomials for the elliptic modular function”, Math. Proc. Cambridge Philos. Soc., 95:3 (1984), 389–402 | MR | Zbl

[3] P. Grinspan, “A measure of simultaneous approximation for quasi-modular functions”, Ramanujan J., 5:1 (2001), 21–45 | MR | Zbl

[4] S. Leng, Ellipticheskie funktsii, Nauka, M., 1984 | MR | Zbl

[5] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Fiziko-matematicheskaya biblioteka inzhenera, Gostekhizdat, M.–L., 1948 | MR | Zbl

[6] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, Oxford, 1979 | MR | Zbl