On Some Properties of Modular Polynomials for the Lambda Function
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 237-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of modular polynomials for the lambda function and present an asymptotic formula for the maximum of the moduli of their coefficients.
Keywords: lambda function, Farey series, algebraic number, holomorphic function.
Mots-clés : modular polynomial, theta constant, Galois group
@article{MZM_2009_86_2_a7,
     author = {V. D. Mirokov},
     title = {On {Some} {Properties} of {Modular} {Polynomials} for the {Lambda} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {237--255},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a7/}
}
TY  - JOUR
AU  - V. D. Mirokov
TI  - On Some Properties of Modular Polynomials for the Lambda Function
JO  - Matematičeskie zametki
PY  - 2009
SP  - 237
EP  - 255
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a7/
LA  - ru
ID  - MZM_2009_86_2_a7
ER  - 
%0 Journal Article
%A V. D. Mirokov
%T On Some Properties of Modular Polynomials for the Lambda Function
%J Matematičeskie zametki
%D 2009
%P 237-255
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a7/
%G ru
%F MZM_2009_86_2_a7
V. D. Mirokov. On Some Properties of Modular Polynomials for the Lambda Function. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 237-255. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a7/

[1] K. Mahler, “On the coefficients of transformation polynomials for the modular function”, Bull. Austral. Math. Soc., 10 (1974), 197–218 | MR | Zbl

[2] P. Cohen, “On the coefficients of the transformation polynomials for the elliptic modular function”, Math. Proc. Cambridge Philos. Soc., 95:3 (1984), 389–402 | MR | Zbl

[3] P. Grinspan, “A measure of simultaneous approximation for quasi-modular functions”, Ramanujan J., 5:1 (2001), 21–45 | MR | Zbl

[4] S. Leng, Ellipticheskie funktsii, Nauka, M., 1984 | MR | Zbl

[5] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Fiziko-matematicheskaya biblioteka inzhenera, Gostekhizdat, M.–L., 1948 | MR | Zbl

[6] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, Oxford, 1979 | MR | Zbl