Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_2_a7, author = {V. D. Mirokov}, title = {On {Some} {Properties} of {Modular} {Polynomials} for the {Lambda} {Function}}, journal = {Matemati\v{c}eskie zametki}, pages = {237--255}, publisher = {mathdoc}, volume = {86}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a7/} }
V. D. Mirokov. On Some Properties of Modular Polynomials for the Lambda Function. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 237-255. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a7/
[1] K. Mahler, “On the coefficients of transformation polynomials for the modular function”, Bull. Austral. Math. Soc., 10 (1974), 197–218 | MR | Zbl
[2] P. Cohen, “On the coefficients of the transformation polynomials for the elliptic modular function”, Math. Proc. Cambridge Philos. Soc., 95:3 (1984), 389–402 | MR | Zbl
[3] P. Grinspan, “A measure of simultaneous approximation for quasi-modular functions”, Ramanujan J., 5:1 (2001), 21–45 | MR | Zbl
[4] S. Leng, Ellipticheskie funktsii, Nauka, M., 1984 | MR | Zbl
[5] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Fiziko-matematicheskaya biblioteka inzhenera, Gostekhizdat, M.–L., 1948 | MR | Zbl
[6] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, Oxford, 1979 | MR | Zbl