On Iterated Browder--Livesay Invariants
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 213-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Browder–Livesay invariants provide obstructions to the realization of elements of Wall groups by normal maps of closed manifolds. A generalization of the iterated Browder–Livesay invariants is proposed and properties of the invariants obtained are described. The generalized definition makes it possible to investigate the relationship between a normal map and its restriction to a submanifold and clarifies the relationship between the Browder–Livesay invariants and the Browder–Quinn groups of obstructions to surgery on filtered manifolds. Several theorems describing a relationship between a normal map and its restriction to a submanifold are proved.
Keywords: Browder–Livesay invariant, cobordism, Wall exact sequence, surgery on filtered manifolds, Browder–Livesay filtration, Browder–Quinn obstruction groups.
@article{MZM_2009_86_2_a6,
     author = {A. Cavicchioli and Yu. V. Muranov and F. Spaggiari and F. Hegenbarth},
     title = {On {Iterated} {Browder--Livesay} {Invariants}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {213--236},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a6/}
}
TY  - JOUR
AU  - A. Cavicchioli
AU  - Yu. V. Muranov
AU  - F. Spaggiari
AU  - F. Hegenbarth
TI  - On Iterated Browder--Livesay Invariants
JO  - Matematičeskie zametki
PY  - 2009
SP  - 213
EP  - 236
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a6/
LA  - ru
ID  - MZM_2009_86_2_a6
ER  - 
%0 Journal Article
%A A. Cavicchioli
%A Yu. V. Muranov
%A F. Spaggiari
%A F. Hegenbarth
%T On Iterated Browder--Livesay Invariants
%J Matematičeskie zametki
%D 2009
%P 213-236
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a6/
%G ru
%F MZM_2009_86_2_a6
A. Cavicchioli; Yu. V. Muranov; F. Spaggiari; F. Hegenbarth. On Iterated Browder--Livesay Invariants. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 213-236. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a6/

[1] C. T. C. Wall, Surgery on Compact Manifolds, Math. Surveys Monogr., 69, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[2] A. Ranicki, Exact Sequences in the Algebraic Theory of Surgery, Math. Notes, 26, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl

[3] A. Ranicki, “The total surgery obstruction”, Algebraic Topology, Aarhus 1978, Lecture Notes in Math., 763, Springer-Verlag, Berlin, 1979, 275–316 | DOI | MR | Zbl

[4] A. A. Ranicki, Algebraic $L$-Theory and Topological Manifolds, Cambridge Tracts in Math., 102, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[5] Novikov Conjectures, Index Theorems and Rigidity, Vol. 1, London Math. Soc. Lecture Note Ser., 226 ; Vol. 2, London Math. Soc. Lecture Note Ser., 227, eds. S. C. Ferry, A. Ranicki, J. Rosenberg, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl | MR | Zbl

[6] I. Hambleton, R. J. Milgram, L. Taylor, B. Williams, “Surgery with finite fundamental group”, Proc. London Math. Soc. (3), 56:2 (1988), 349–379 | DOI | MR | Zbl

[7] I. Hambleton, “Projective surgery obstructions on closed manifolds”, Algebraic $K$-Theory, Part II, Lecture Notes in Math., 967, Springer-Verlag, Berlin–New York, 1982, 101–131 | DOI | MR | Zbl

[8] A. F. Kharshiladze, “Iterirovannye invarianty Braudera–Livsi i uzing-problema”, Matem. zametki, 41:4 (1987), 557–563 | MR | Zbl

[9] A. F. Kharshiladze, “Perestroika mnogoobrazii s konechnymi fundamentalnymi gruppami”, UMN, 42:4 (1987), 55–85 | MR | Zbl

[10] C. T. C. Wall, “Formulae for surgery obstructions”, Topology, 15:3 (1976), 189–210 ; “Formulae for surgery obstructions: corrigendum”, Topology, 16:4 (1977), 495–496 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Yu. V. Muranov, R. Khimenez, “Otobrazheniya transfera dlya troek mnogoobrazii”, Matem. zametki, 79:3 (2006), 420–433 | MR | Zbl

[12] Yu. V. Muranov, D. Repovsh, R. Khimenez, “Spektralnaya posledovatelnost v teorii perestroek i mnogoobraziya s filtratsiei”, Tr. MMO, 67, URSS, M., 2006, 294–325 | MR | Zbl

[13] W. Browder, F. Quinn, “A surgery theory for $G$-manifolds and stratified sets”, Manifolds (Tokyo, 1973), Univ. Tokyo Press, Tokyo, 1975, 27–36 | MR | Zbl

[14] S. Weinberger, The Topological Classification of Stratified Spaces, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1994 | MR | Zbl

[15] W. Browder, G. R. Livesay, “Fixed point free involutions on homotopy spheres”, Bull. Amer. Math. Soc., 73 (1967), 242–245 | DOI | MR | Zbl

[16] S. E. Cappell, J. L. Shaneson, “Pseudo-free actions. I”, Algebraic Topology, Aarhus 1978, Lecture Notes in Math., 763, Springer-Verlag, Berlin, 1979, 395–447 | DOI | MR | Zbl

[17] Yu. V. Muranov, “Zadacha rasschepleniya”, Otobrazheniya i razmernost, Sbornik statei. K 100-letiyu so dnya rozhdeniya akademika Pavla Sergeevicha Aleksandrova, Tr. MIAN, 212, Nauka, M., 1996, 123–146 | MR | Zbl

[18] A. Ranicki, “The $L$-theory of twisted quadratic extensions”, Canad. J. Math., 39:2 (1987), 345–364 | MR | Zbl

[19] A. F. Kharshiladze, “Rasschepleniya vdol sistem podmnogoobrazii”, Matem. sb., 125:2 (1984), 280–286 | MR | Zbl

[20] I. Hambleton, A. Ranicki, L. Taylor, “Round $L$-theory”, J. Pure Appl. Algebra, 47:2 (1987), 131–154 | DOI | MR | Zbl

[21] I. Khemblton, A. F. Kharshiladze, “Spektralnaya posledovatelnost v teorii perestroek”, Matem. sb., 183:9 (1992), 3–14 | MR | Zbl

[22] A. Bak, Yu. V. Muranov, “Rasscheplenie vdol podmnogoobrazii i $L$-spektry”, Topologiya, analiz i smezhnye voprosy, Materialy mezhdunarodnoi konferentsii, posvyaschennoi shestidesyatiletiyu professora A. S. Mischenko (28–31 avgusta 2001, Moskva), Sovremennaya matematika i ee prilozheniya, 1, In-t kibernetiki AN Gruzii, Tbilisi, 2003, 3–18 ; A. Bak, Yu. V. Muranov, “Splitting along submanifolds and $L$-spectra”, J. Math. Sci. (N. Y.), 123:4 (2004), 4169–4184 | MR | DOI | Zbl

[23] R. M. Switzer, Algebraic Topology – Homotopy and Homology, Grundlehren Math. Wiss., 212, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[24] Yu. V. Muranov, D. Repovsh, F. Spaggiari, “Perestroika troek mnogoobrazii”, Matem. sb., 194:8 (2003), 139–160 | MR | Zbl

[25] A. Cavicchioli, Yu. V. Muranov, F. Spaggiari, On the elements of the second type in surgery groups, Preprint no. 111, Max-Planck-Institut für Mathematik, Bonn, 2006

[26] E. Bak, Yu. V. Muranov, “Rasscheplenie prostoi gomotopicheskoi ekvivalentnosti vdol podmnogoobraziya s filtratsiei”, Matem. sb., 199:6 (2008), 3–26 | MR | Zbl

[27] S. López de Medrano, Involutions on Manifolds, Ergeb. Math. Grenzgeb., 59, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl

[28] Yu. V. Muranov, A. F. Kharshiladze, “Gruppy Braudera–Livsi abelevykh 2-grupp”, Matem. sb., 181:8 (1990), 1061–1098 | MR | Zbl

[29] P. M. Akhmetiev, A. Cavicchioli, D. Repovš, “On realization of splitting obstructions in Browder–Livesay groups for closed manifold pairs”, Proc. Edinburgh Math. Soc. (2), 43:1 (2000), 15–25 | DOI | MR | Zbl

[30] H. K. Mukerjee, “Classification of homotopy Dold manifolds”, New York J. Math., 9 (2003), 271–293 | MR | Zbl

[31] A. Cavicchioli, Yu. V. Muranov, F. Spaggiari, “Relative groups in surgery theory”, Bull. Belg. Math. Soc. Simon Stevin, 12:1 (2005), 109–135 | MR | Zbl

[32] P. M. Akhmetev, “$K_2$ dlya prosteishikh tselochislennykh gruppovykh kolets i topologicheskie prilozheniya”, Matem. sb., 194:1 (2003), 23–30 | MR | Zbl

[33] Yu. V. Muranov, “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. matem., 59:6 (1995), 107–132 | MR | Zbl

[34] E. Bak, Yu. V. Muranov, “Normalnye invarianty par mnogoobrazii i signaturnye otobrazheniya”, Matem. sb., 197:6 (2006), 3–24 | MR | Zbl

[35] A. Cavicchioli, Yu. V. Muranov, F. Spaggiari, “Mixed structures on a manifold with boundary”, Glasg. Math. J., 48:1 (2006), 125–143 | DOI | MR | Zbl

[36] M. Cencelj, Yu. V. Muranov, D. Repovš, “On the splitting problem for manifold pairs with boundaries”, Abh. Math. Sem. Univ. Hamburg, 76:1 (2006), 35–55 | DOI | MR | Zbl