The Volume of the Lambert Cube in Spherical Space
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 190-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lambert cube $Q(\alpha,\beta,\gamma)$ is one of the simplest polyhedra. By definition, this is a combinatorial cube with dihedral angles $\alpha$, $\beta$, and $\gamma$ at three noncoplanar edges and with right angles at all other edges. The volume of the Lambert cube in hyperbolic space was obtained by R. Kellerhals (1989) in terms of the Lobachevskii function $\Lambda(x)$. In the present paper, we find the volume of the Lambert cube in spherical space. It is expressed in terms of the function $$ \delta(\alpha,\theta)=\int_{\theta}^{\pi/2}\log(1-\cos2\alpha\cos2\tau)\frac{d\tau}{\cos2\tau}, $$ which can be regarded as the spherical analog of the function $$ \Delta(\alpha,\theta)=\Lambda(\alpha+\theta)-\Lambda(\alpha-\theta). $$
Mots-clés : Lambert cube
Keywords: spherical space, hyperbolic space, Lobachevskii function, Schläfli formula.
@article{MZM_2009_86_2_a4,
     author = {D. A. Derevnin and A. D. Mednykh},
     title = {The {Volume} of the {Lambert} {Cube} in {Spherical} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {190--201},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a4/}
}
TY  - JOUR
AU  - D. A. Derevnin
AU  - A. D. Mednykh
TI  - The Volume of the Lambert Cube in Spherical Space
JO  - Matematičeskie zametki
PY  - 2009
SP  - 190
EP  - 201
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a4/
LA  - ru
ID  - MZM_2009_86_2_a4
ER  - 
%0 Journal Article
%A D. A. Derevnin
%A A. D. Mednykh
%T The Volume of the Lambert Cube in Spherical Space
%J Matematičeskie zametki
%D 2009
%P 190-201
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a4/
%G ru
%F MZM_2009_86_2_a4
D. A. Derevnin; A. D. Mednykh. The Volume of the Lambert Cube in Spherical Space. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 190-201. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a4/

[1] I. Kh. Sabitov, “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425 | DOI | MR | Zbl

[2] R. Kellerhals, “On the volume of hyperbolic polyhedra”, Math. Ann., 285:4 (1989), 541–569 | DOI | MR | Zbl

[3] A. D. Mednykh, “On hyperbolic and spherical volumes for link cone-manifolds”, Kleinian Groups and Hyperbolic 3-Manifolds (Warwick, 2001), London Math. Soc. Lecture Note Ser., 299, Cambridge Univ. Press, Cambridge, 2003, 145–163 | MR | Zbl

[4] A. D. Mednykh, J. R. Parker, A. Yu. Vesnin, “On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups”, Bol. Soc. Mat. Mexicana (3), 10, Special Issue (2004), 357–381 | MR | Zbl

[5] Geometry. II. Spaces of Constant Curvature, Encyclopaedia Math. Sci., 29, ed. E. B. Vinberg, Springer-Verlag, New York, 1993 | MR | Zbl

[6] Y. Cho, H. Kim, “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22:3 (1999), 347–366 | DOI | MR | Zbl

[7] J. Murakami, M. Yano, “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13:2 (2005), 379–400 | MR | Zbl

[8] A. Ushijima, “A volume formula for generalised hyperbolic tetrahedra”, Non-Euclidean Geometries, Math. Appl. (N. Y.), 581, Springer-Verlag, New York, 2006, 249–265 | DOI | MR | Zbl

[9] D. A. Derevnin, A. D. Mednykh, “O formule ob'ema giperbolicheskogo tetraedra”, UMN, 60:2 (2005), 159–160 | MR | Zbl

[10] J. Milnor, “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc. (N.S.), 6:1 (1982), 9–24 | DOI | MR | Zbl

[11] D. A. Derevnin, A. D. Mednykh, M. G. Pashkevich, “Ob'em simmetrichnogo tetraedra v giperbolicheskom i sfericheskom prostranstvakh”, Sib. matem. zhurn., 45:5 (2004), 1022–1031 | MR | Zbl

[12] G. Sforza, “Spazi metrico-projettivi”, Ric. Esten. Different. Ser. (3), 8 (1906), 3–66

[13] N. I. Lobatschefskij, Imaginäre Geometrie und ihre Anwendung auf einige Integrale, Abhandlungen zur Geschichte der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, 19, Teubner, Leipzig, 1904

[14] L. Schläfli, “Theorie der vielfachen Kontinuität”, Gesammelte Mathematische Abhandlungen, Bd. I, Birkhäuser-Verlag, Basel, 1950, 167–392 | MR | Zbl

[15] H. S. M. Coxeter, “The functions of Schläfli and Lobatschefsky”, Quart. J. Math. (Oxford), 6:1 (1935), 13–29 | DOI | Zbl

[16] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “On the Borromean orbifolds: geometry and arithmetic”, Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992, 133–167 | MR | Zbl

[17] R. Díaz, “A characterization of Gram matrices of polytopes”, Discrete Comput. Geom., 21:4 (1999), 581–601 | DOI | MR | Zbl

[18] W. P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton Univ. Press, Princeton, NJ, 1980

[19] A. Yu. Vesnin, A. D. Mednykh, “Giperbolicheskie ob'emy mnogoobrazii Fibonachchi”, Sib. matem. zhurn., 36:2 (1995), 266–277 | MR | Zbl

[20] J. Milnor, “The Schläfli differential equality”, Collected Papers. I. Geometry, Publish or Perish, Houston, TX, 1994, 281–295 | MR | Zbl

[21] A. A. Felikson, “Kuby Lamberta, porozhdayuschie diskretnye gruppy otrazhenii”, Matem. zametki, 75:2 (2004), 277–286 | MR | Zbl