Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_2_a4, author = {D. A. Derevnin and A. D. Mednykh}, title = {The {Volume} of the {Lambert} {Cube} in {Spherical} {Space}}, journal = {Matemati\v{c}eskie zametki}, pages = {190--201}, publisher = {mathdoc}, volume = {86}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a4/} }
D. A. Derevnin; A. D. Mednykh. The Volume of the Lambert Cube in Spherical Space. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 190-201. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a4/
[1] I. Kh. Sabitov, “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425 | DOI | MR | Zbl
[2] R. Kellerhals, “On the volume of hyperbolic polyhedra”, Math. Ann., 285:4 (1989), 541–569 | DOI | MR | Zbl
[3] A. D. Mednykh, “On hyperbolic and spherical volumes for link cone-manifolds”, Kleinian Groups and Hyperbolic 3-Manifolds (Warwick, 2001), London Math. Soc. Lecture Note Ser., 299, Cambridge Univ. Press, Cambridge, 2003, 145–163 | MR | Zbl
[4] A. D. Mednykh, J. R. Parker, A. Yu. Vesnin, “On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups”, Bol. Soc. Mat. Mexicana (3), 10, Special Issue (2004), 357–381 | MR | Zbl
[5] Geometry. II. Spaces of Constant Curvature, Encyclopaedia Math. Sci., 29, ed. E. B. Vinberg, Springer-Verlag, New York, 1993 | MR | Zbl
[6] Y. Cho, H. Kim, “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22:3 (1999), 347–366 | DOI | MR | Zbl
[7] J. Murakami, M. Yano, “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13:2 (2005), 379–400 | MR | Zbl
[8] A. Ushijima, “A volume formula for generalised hyperbolic tetrahedra”, Non-Euclidean Geometries, Math. Appl. (N. Y.), 581, Springer-Verlag, New York, 2006, 249–265 | DOI | MR | Zbl
[9] D. A. Derevnin, A. D. Mednykh, “O formule ob'ema giperbolicheskogo tetraedra”, UMN, 60:2 (2005), 159–160 | MR | Zbl
[10] J. Milnor, “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc. (N.S.), 6:1 (1982), 9–24 | DOI | MR | Zbl
[11] D. A. Derevnin, A. D. Mednykh, M. G. Pashkevich, “Ob'em simmetrichnogo tetraedra v giperbolicheskom i sfericheskom prostranstvakh”, Sib. matem. zhurn., 45:5 (2004), 1022–1031 | MR | Zbl
[12] G. Sforza, “Spazi metrico-projettivi”, Ric. Esten. Different. Ser. (3), 8 (1906), 3–66
[13] N. I. Lobatschefskij, Imaginäre Geometrie und ihre Anwendung auf einige Integrale, Abhandlungen zur Geschichte der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, 19, Teubner, Leipzig, 1904
[14] L. Schläfli, “Theorie der vielfachen Kontinuität”, Gesammelte Mathematische Abhandlungen, Bd. I, Birkhäuser-Verlag, Basel, 1950, 167–392 | MR | Zbl
[15] H. S. M. Coxeter, “The functions of Schläfli and Lobatschefsky”, Quart. J. Math. (Oxford), 6:1 (1935), 13–29 | DOI | Zbl
[16] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “On the Borromean orbifolds: geometry and arithmetic”, Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992, 133–167 | MR | Zbl
[17] R. Díaz, “A characterization of Gram matrices of polytopes”, Discrete Comput. Geom., 21:4 (1999), 581–601 | DOI | MR | Zbl
[18] W. P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton Univ. Press, Princeton, NJ, 1980
[19] A. Yu. Vesnin, A. D. Mednykh, “Giperbolicheskie ob'emy mnogoobrazii Fibonachchi”, Sib. matem. zhurn., 36:2 (1995), 266–277 | MR | Zbl
[20] J. Milnor, “The Schläfli differential equality”, Collected Papers. I. Geometry, Publish or Perish, Houston, TX, 1994, 281–295 | MR | Zbl
[21] A. A. Felikson, “Kuby Lamberta, porozhdayuschie diskretnye gruppy otrazhenii”, Matem. zametki, 75:2 (2004), 277–286 | MR | Zbl