Quasi-Energy Function for Diffeomorphisms with Wild Separatrices
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 175-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class $G_4$ of Morse–Smale diffeomorphisms on $\mathbb S^3$ with nonwandering set consisting of four fixed points (namely, one saddle, two sinks, and one source). According to Pixton, this class contains a diffeomorphism that does not have an energy function, i.e., a Lyapunov function whose set of critical points coincides with the set of periodic points of the diffeomorphism itself. We define a quasi-energy function for any Morse–Smale diffeomorphism as a Lyapunov function with the least number of critical points. Next, we single out the class $G_{4,1}\subset G_4$ of diffeomorphisms inducing a special Heegaard splitting of genus 1 of the sphere $\mathbb S^3$. For each diffeomorphism in $G_{4,1}$, we present a quasi-energy function with six critical points.
Keywords: Morse–Smale diffeomorphism, Lyapunov function, Morse theory, saddle, sink, separatrix, wild embedding, Heegaard splitting, cobordism.
Mots-clés : source
@article{MZM_2009_86_2_a2,
     author = {V. Z. Grines and F. Laudenbach and O. V. Pochinka},
     title = {Quasi-Energy {Function} for {Diffeomorphisms} with {Wild} {Separatrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {175--183},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a2/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - F. Laudenbach
AU  - O. V. Pochinka
TI  - Quasi-Energy Function for Diffeomorphisms with Wild Separatrices
JO  - Matematičeskie zametki
PY  - 2009
SP  - 175
EP  - 183
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a2/
LA  - ru
ID  - MZM_2009_86_2_a2
ER  - 
%0 Journal Article
%A V. Z. Grines
%A F. Laudenbach
%A O. V. Pochinka
%T Quasi-Energy Function for Diffeomorphisms with Wild Separatrices
%J Matematičeskie zametki
%D 2009
%P 175-183
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a2/
%G ru
%F MZM_2009_86_2_a2
V. Z. Grines; F. Laudenbach; O. V. Pochinka. Quasi-Energy Function for Diffeomorphisms with Wild Separatrices. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 175-183. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a2/

[1] V. Grines, F. Laudenbach, O. Pochinka, Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds, arXiv: math.DS/0804.0699

[2] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | MR | Zbl

[3] R. H. Fox, E. Artin, “Some wild cells and spheres in three-dimensional space”, Ann. of Math. (2), 49 (1948), 979–990 | MR | Zbl

[4] O. G. Harrold, H. C. Griffith, E. E. Posey, “A characterization of tame curves in three-space”, Trans. Amer. Math. Soc., 79 (1955), 12–34 | MR | Zbl

[5] C. Bonatti, V. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $\mathbb S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | MR | Zbl

[6] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | MR | Zbl

[7] J. Milnor, Lectures on the $h$-Cobordism Theorem, Notes by L. Siebenmann and J. Sondow, Princeton Univ. Press, Princeton, NJ, 1965 | MR | Zbl

[8] J. Milnor, Morse Theory, Based on lecture notes by M. Spivak and R. Wells, Ann. of Math. Stud., 51, Princeton Univ. Press, Princeton, NJ, 1963 | MR | Zbl

[9] J. Palis, “On Morse–Smale dynamical systems”, Topology, 8 (1969), 385–404 | MR | Zbl