On the Existence of Nonlinear Pad\'e--Chebyshev Approximations for Analytic Functions
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 290-303

Voir la notice de l'article provenant de la source Math-Net.Ru

We present examples of two functions that are analytic on the interval $[-1,1]$ and satisfy the condition that, for any $n=2,3,\dots$, the first of them does not have nonlinear Padé–Chebyshev approximations of type $(n,2)$ and the second function does not have nonlinear Padé–Chebyshev approximations of type $(n,n)$ (i.e., does not have diagonal approximations). Because of the existence criterion for nonlinear Padé–Faber approximations, which is obtained in the present paper, both of these examples follow from the respective well-known V. I. Buslaev counterexamples to the Baker–Graves-Morris conjecture and to the Baker–Gammel–Wills conjecture about the Padé approximations of a power series. In particular, the first of these functions is a rational function of type $(2,3)$, and the second function is also defined by an explicit analytic expression.
Keywords: analytic function, rational function, algebraic function, Padé–Chebyshev approximation, Padé–Faber approximation, Faber series.
Mots-clés : Laurent series
@article{MZM_2009_86_2_a11,
     author = {S. P. Suetin},
     title = {On the {Existence} of {Nonlinear} {Pad\'e--Chebyshev} {Approximations} for {Analytic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {290--303},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a11/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - On the Existence of Nonlinear Pad\'e--Chebyshev Approximations for Analytic Functions
JO  - Matematičeskie zametki
PY  - 2009
SP  - 290
EP  - 303
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a11/
LA  - ru
ID  - MZM_2009_86_2_a11
ER  - 
%0 Journal Article
%A S. P. Suetin
%T On the Existence of Nonlinear Pad\'e--Chebyshev Approximations for Analytic Functions
%J Matematičeskie zametki
%D 2009
%P 290-303
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a11/
%G ru
%F MZM_2009_86_2_a11
S. P. Suetin. On the Existence of Nonlinear Pad\'e--Chebyshev Approximations for Analytic Functions. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 290-303. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a11/