On the Existence of Nonlinear Pad\'e--Chebyshev Approximations for Analytic Functions
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 290-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present examples of two functions that are analytic on the interval $[-1,1]$ and satisfy the condition that, for any $n=2,3,\dots$, the first of them does not have nonlinear Padé–Chebyshev approximations of type $(n,2)$ and the second function does not have nonlinear Padé–Chebyshev approximations of type $(n,n)$ (i.e., does not have diagonal approximations). Because of the existence criterion for nonlinear Padé–Faber approximations, which is obtained in the present paper, both of these examples follow from the respective well-known V. I. Buslaev counterexamples to the Baker–Graves-Morris conjecture and to the Baker–Gammel–Wills conjecture about the Padé approximations of a power series. In particular, the first of these functions is a rational function of type $(2,3)$, and the second function is also defined by an explicit analytic expression.
Keywords: analytic function, rational function, algebraic function, Padé–Chebyshev approximation, Padé–Faber approximation, Faber series.
Mots-clés : Laurent series
@article{MZM_2009_86_2_a11,
     author = {S. P. Suetin},
     title = {On the {Existence} of {Nonlinear} {Pad\'e--Chebyshev} {Approximations} for {Analytic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {290--303},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a11/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - On the Existence of Nonlinear Pad\'e--Chebyshev Approximations for Analytic Functions
JO  - Matematičeskie zametki
PY  - 2009
SP  - 290
EP  - 303
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a11/
LA  - ru
ID  - MZM_2009_86_2_a11
ER  - 
%0 Journal Article
%A S. P. Suetin
%T On the Existence of Nonlinear Pad\'e--Chebyshev Approximations for Analytic Functions
%J Matematičeskie zametki
%D 2009
%P 290-303
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a11/
%G ru
%F MZM_2009_86_2_a11
S. P. Suetin. On the Existence of Nonlinear Pad\'e--Chebyshev Approximations for Analytic Functions. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 290-303. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a11/

[1] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade. Ch. 1. Osnovy teorii. Ch. 2. Obobscheniya i prilozheniya, Mir, M., 1986 | MR | Zbl

[2] H. J. Maehly, “Rational approximations for transcendental functions”, Information Processing, Proceedings of the International Conference on Information Processing (15–20 June 1959, Paris), UNESCO, Paris, 1960, 57–62 | MR | Zbl

[3] C. W. Clenshaw, K. Lord, “Rational approximations from Chebyshev series”, Studies in Numerical Analysis, Papers in honour of Cornelius Lanczos on the occasion of his 80th birthday, Academic Press, London, 1974, 95–113 | MR | Zbl

[4] J. C. Mason, A. Crampton, “Laurent–Padé approximants to four kinds of Chebyshev polynomial expansions. I. Maehly type approximants”, Numer. Algorithms, 38:1–3 (2005), 3–18 | MR | Zbl

[5] J. C. Mason, A. Crampton, “Laurent–Padé approximants to four kinds of Chebyshev polynomial expansions. II. Clenshaw–Lord type approximants”, Numer. Algorithms, 38:1–3 (2005), 19–29 | MR | Zbl

[6] I. V. Andrianov, “Application of Padé-approximants in perturbation methods”, Adv. in Mech., 14:2 (1991), 3–25 | MR

[7] I. V. Andrianov, J. Awrejcewicz, “New trends in asymptotic approaches: summation and interpolation methods”, Appl. Mech. Rev., 54:1 (2001), 69–92

[8] L. A. Knizhnerman, “Vydelenie polyusov potentsialnykh polei s pomoschyu razlozheniya v ryady Fure–Chebyshëva”, Izv. AN SSSR. Ser. Fizika Zemli, 1984, no. 11, 119–123

[9] T. W. Tee, L. N. Trefethen, “A rational spectral collocation method with adaptively transformed Chebyshev grid points”, SIAM J. Sci. Comput., 28:5 (2006), 1798–1811 | MR | Zbl

[10] V. Druskin, L. Knizhnerman, “Gaussian spectral rules for the three-point second differences. I. A two-point positive definite problem in a semi-infinite domain”, SIAM J. Numer. Anal., 37:2 (2000), 403–422 | DOI | MR | Zbl

[11] K. M. Ermokhin, “Prodolzhenie geofizicheskikh polei v oblast istochnikov anomalii metodom approksimatsii tsepnymi drobyami”, Geofizika, 2007, no. 1, 51–55

[12] L. A. Knizhnerman, “Kvadratura Gaussa–Arnoldi dlya funktsii $\langle(zI-A)^{-1}\varphi,\varphi\rangle$ i Pade-podobnaya ratsionalnaya approksimatsiya funktsii markovskogo tipa”, Matem. sb., 199:2 (2008), 27–48 | MR | Zbl

[13] G. L. Litvinov, “Error autocorrection in rational approximation and interval estimates. A survey of results”, Cent. Eur. J. Math., 1:1 (2003), 36–60 | DOI | MR | Zbl

[14] G. Prokhorov, V. Kolbeev, K. Zhelnov, M. Ledenev, Matematicheskii paket Maple V Release 4: Rukovodstvo polzovatelya, http://www.exponenta.ru/soft/maple/kaluga/1.asp

[15] S. P. Suetin, “O teoreme Montessu de Bolora dlya nelineinykh approksimatsii Pade ortogonalnykh razlozhenii i ryadov Fabera”, Dokl. AN SSSR, 253:6 (1980), 1322–1325 | MR | Zbl

[16] K. O. Geddes, “Block structure in the Chebyshev–Padé table”, SIAM J. Numer. Anal., 18:5 (1981), 844–861 | DOI | MR | Zbl

[17] L. N. Trefethen, M. H. Gutknecht, “Padé, stable Padé, and Chebyshev–Padé approximation”, Algorithms for Approximation (Shrivenham, 1985), Inst. Math. Appl. Conf. Ser. New Ser., 10, Oxford Univ. Press, New York, 1987, 227–264 | MR | Zbl

[18] O. L. Ibryaeva, “Dostatochnoe uslovie edinstvennosti lineinoi approksimatsii Pade–Chebysheva”, Izv. Chelyabinsk. nauchn. tsentra, 2002, no. 4, 1–5 | MR

[19] V. M. Adukov, O. L. Ibryaeva, “O vychislenii approksimatsii Pade i Pade–Chebyshëva v sisteme MAPLE”, Tezisy dokladov mezhdunarodnoi konferentsii “Sistemy kompyuternoi matematiki i ikh prilozheniya” (19–21 maya 2008, Smolensk), Smolensk. gos. un-t, Smolensk, 2008, 17–19

[20] V. I. Buslaev, A. A. Gonchar, S. P. Suetin, “O skhodimosti podposledovatelnostei $m$-i stroki tablitsy Pade”, Matem. sb., 120:4 (1983), 540–545 | MR | Zbl

[21] V. I. Buslaev, “Simple counterexample to the Baker–Gammel–Wills conjecture”, East J. Approx., 7:4 (2001), 515–517 | MR | Zbl

[22] V. I. Buslaev, “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Matem. sb., 193:6 (2002), 25–38 | MR | Zbl

[23] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[24] S. P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | MR | Zbl

[25] A. P. Holub, “The method of generalized moment representations in the theory of rational approximation. A survey”, Ukrainian Math. J., 55:3 (2003), 377–433 | DOI | MR | Zbl

[26] G. Frobenius, “Üeber Relationen zwischen den Näherungsbruchen von Potenzreihen”, Borchardt J., 90 (1880), 1–17 | Zbl

[27] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl

[28] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1964 | MR | Zbl

[29] S. P. Suetin, Voprosy skhodimosti approksimatsii Pade–Fabera, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1981

[30] S. W. Ellacott, “On the Faber transform and efficient numerical rational approximation”, SIAM J. Numer. Anal., 20:5 (1983), 989–1000 | DOI | MR | Zbl

[31] S. W. Ellacott, E. B. Saff, “Computing with the Faber transform”, Rational Approximation and Interpolation (Tampa, FL, 1983), Lecture Notes in Math., 1105, Springer-Verlag, Berlin, 1984, 412–418 | DOI | MR | Zbl

[32] A. A. Gonchar, “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97:4 (1975), 607–629 | MR | Zbl

[33] V. M. Adukov, O. L. Ibryaeva, “Asimptoticheskoe povedenie znamenatelei approksimatsii Pade–Chebyshëva dlya poslednei promezhutochnoi stroki. Ratsionalnyi sluchai”, Vestnik YuUrGU. Ser. matem., fiz., khim., 6:6 (2005), 11–18

[34] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “O skhodimosti approksimatsii Pade ortogonalnykh razlozhenii”, Teoriya chisel, algebra, matematicheskii analiz i ikh prilozheniya, Sbornik statei. K 100-letiyu so dnya rozhdeniya akademika Ivana Matveevicha Vinogradova, Tr. MIAN, 200, Nauka, M., 1991, 136–146 | MR | Zbl

[35] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer-Verlag, New York, 1992, 169–190 | MR | Zbl

[36] S. P. Suetin, “O teoreme Montessu de Bolora dlya ratsionalnykh approksimatsii ortogonalnykh razlozhenii”, Matem. sb., 114:3 (1981), 451–464 | MR | Zbl