Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_2_a1, author = {P. A. Borodin and I. A. Pyatyshev}, title = {An {Example} of {Non-Approximatively-Compact} {Existence} {Set} with {Finite-Valued} {Metric} {Projection}}, journal = {Matemati\v{c}eskie zametki}, pages = {170--174}, publisher = {mathdoc}, volume = {86}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a1/} }
TY - JOUR AU - P. A. Borodin AU - I. A. Pyatyshev TI - An Example of Non-Approximatively-Compact Existence Set with Finite-Valued Metric Projection JO - Matematičeskie zametki PY - 2009 SP - 170 EP - 174 VL - 86 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a1/ LA - ru ID - MZM_2009_86_2_a1 ER -
P. A. Borodin; I. A. Pyatyshev. An Example of Non-Approximatively-Compact Existence Set with Finite-Valued Metric Projection. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 170-174. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a1/
[1] N. V. Efimov, S. B. Stechkin, “Approksimativnaya kompaktnost i chebyshevskie mnozhestva”, Dokl. AN SSSR, 140:3 (1961), 522–524 | MR | Zbl
[2] V. S. Balaganskii, L. P. Vlasov, “Problema vypuklosti chebyshevskikh mnozhestv”, UMN, 51:6 (1996), 125–188 | MR | Zbl
[3] L. P. Vlasov, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl
[4] S. V. Konyagin, “Ob approksimativnykh svoistvakh proizvolnykh zamknutykh mnozhestv v banakhovykh prostranstvakh”, Fundament. i prikl. matem., 3:4 (1997), 979–989 | MR | Zbl
[5] C. B. Dunham, “Chebyshev sets in $C[0,1]$ which are not sums”, Canad. Math. Bull., 18:1 (1975), 35–37 | MR | Zbl
[6] D. Braess, “Geometrical characterizations for nonlinear uniform approximation”, J. Approx. Theory, 11:3 (1974), 260–274 | DOI | MR | Zbl
[7] P. D. Morris, “Chebyshev subspaces of $L^1$ with linear metric projection”, J. Approx. Theory, 29:3 (1980), 231–234 | DOI | MR | Zbl