An Example of Non-Approximatively-Compact Existence Set with Finite-Valued Metric Projection
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 170-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

An example indicated in the title is constructed in an arbitrary Banach lattice in which the order is defined by a countable symmetric Schauder basis with the symmetry constant 1 and which satisfies the additional condition of strict monotonicity of the norm with respect to the coordinates.
Keywords: Banach lattice, Hilbert space, symmetric Schauder basis, approximatively compact set, metric projection.
Mots-clés : existence set
@article{MZM_2009_86_2_a1,
     author = {P. A. Borodin and I. A. Pyatyshev},
     title = {An {Example} of {Non-Approximatively-Compact} {Existence} {Set} with {Finite-Valued} {Metric} {Projection}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {170--174},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
AU  - I. A. Pyatyshev
TI  - An Example of Non-Approximatively-Compact Existence Set with Finite-Valued Metric Projection
JO  - Matematičeskie zametki
PY  - 2009
SP  - 170
EP  - 174
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a1/
LA  - ru
ID  - MZM_2009_86_2_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%A I. A. Pyatyshev
%T An Example of Non-Approximatively-Compact Existence Set with Finite-Valued Metric Projection
%J Matematičeskie zametki
%D 2009
%P 170-174
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a1/
%G ru
%F MZM_2009_86_2_a1
P. A. Borodin; I. A. Pyatyshev. An Example of Non-Approximatively-Compact Existence Set with Finite-Valued Metric Projection. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 170-174. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a1/

[1] N. V. Efimov, S. B. Stechkin, “Approksimativnaya kompaktnost i chebyshevskie mnozhestva”, Dokl. AN SSSR, 140:3 (1961), 522–524 | MR | Zbl

[2] V. S. Balaganskii, L. P. Vlasov, “Problema vypuklosti chebyshevskikh mnozhestv”, UMN, 51:6 (1996), 125–188 | MR | Zbl

[3] L. P. Vlasov, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl

[4] S. V. Konyagin, “Ob approksimativnykh svoistvakh proizvolnykh zamknutykh mnozhestv v banakhovykh prostranstvakh”, Fundament. i prikl. matem., 3:4 (1997), 979–989 | MR | Zbl

[5] C. B. Dunham, “Chebyshev sets in $C[0,1]$ which are not sums”, Canad. Math. Bull., 18:1 (1975), 35–37 | MR | Zbl

[6] D. Braess, “Geometrical characterizations for nonlinear uniform approximation”, J. Approx. Theory, 11:3 (1974), 260–274 | DOI | MR | Zbl

[7] P. D. Morris, “Chebyshev subspaces of $L^1$ with linear metric projection”, J. Approx. Theory, 29:3 (1980), 231–234 | DOI | MR | Zbl