Stability of Coincidence Points and Properties of Covering Mappings
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of closed set-valued covering mappings acting from one metric space into another are studied. Under quite general assumptions, it is proved that, if a given $\alpha$-covering mapping and a mapping satisfying the Lipschitz condition with constant $\beta\alpha$ have a coincidence point, then this point is stable under small perturbations (with respect to the Hausdorff metric) of these mappings. This assertion is meaningful for single-valued mappings as well. The structure of the set of coincidence points of an $\alpha$-covering and a Lipschitzian mapping is studied. Conditions are obtained under which the limit of a sequence of $\alpha$-covering set-valued mappings is an $(\alpha-\varepsilon)$-covering for an arbitrary $\varepsilon>0$.
Keywords: coincidence point, set-valued mapping, covering mapping, metric space, Lipschitzian mapping, generalized Hausdorff metric, complete space.
@article{MZM_2009_86_2_a0,
     author = {A. V. Arutyunov},
     title = {Stability of {Coincidence} {Points} and {Properties} of {Covering} {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Stability of Coincidence Points and Properties of Covering Mappings
JO  - Matematičeskie zametki
PY  - 2009
SP  - 163
EP  - 169
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a0/
LA  - ru
ID  - MZM_2009_86_2_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Stability of Coincidence Points and Properties of Covering Mappings
%J Matematičeskie zametki
%D 2009
%P 163-169
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a0/
%G ru
%F MZM_2009_86_2_a0
A. V. Arutyunov. Stability of Coincidence Points and Properties of Covering Mappings. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a0/

[1] Dzh. L. Kelli, Obschaya topologiya, Nauka, M., 1981 | MR | Zbl

[2] A. V. Arutyunov, “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. RAN, 416:2 (2007), 151–155 | MR | Zbl

[3] A. D. Ioffe, “Metricheskaya regulyarnost i subdifferentsialnoe ischislenie”, UMN, 55:3 (2000), 103–162 | MR | Zbl

[4] A. V. Dmitruk, A. A. Milyutin, N. P. Osmolovskii, “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl