On the Geometry of Locally Conformally Almost Cosymplectic Manifolds
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 126-138

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the complete group of structure equations of a locally conformally almost cosymplectic structure (an $lc\mathscr{AC_S}$-structure in what follows) and compute the components of the Riemannian curvature tensor on the space of the associated $G$-structure. Normal $lc\mathscr{AC_S}$-structures are studied in more detail. In particular, we prove that the contact analogs of A. Gray's second and third curvature identities hold on normal $lc\mathscr{AC_S}$-manifolds, while the contact analog of A. Gray's first identity holds if and only if the manifold is cosymplectic.
Keywords: locally conformally almost cosymplectic structure, almost contact manifold, Riemann curvature tensor, Gray's identities.
Mots-clés : $G$-structure, conformal transformation, structure equations
@article{MZM_2009_86_1_a9,
     author = {S. V. Kharitonova},
     title = {On the {Geometry} of {Locally} {Conformally} {Almost} {Cosymplectic} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {126--138},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a9/}
}
TY  - JOUR
AU  - S. V. Kharitonova
TI  - On the Geometry of Locally Conformally Almost Cosymplectic Manifolds
JO  - Matematičeskie zametki
PY  - 2009
SP  - 126
EP  - 138
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a9/
LA  - ru
ID  - MZM_2009_86_1_a9
ER  - 
%0 Journal Article
%A S. V. Kharitonova
%T On the Geometry of Locally Conformally Almost Cosymplectic Manifolds
%J Matematičeskie zametki
%D 2009
%P 126-138
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a9/
%G ru
%F MZM_2009_86_1_a9
S. V. Kharitonova. On the Geometry of Locally Conformally Almost Cosymplectic Manifolds. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 126-138. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a9/