On the Geometry of Locally Conformally Almost Cosymplectic Manifolds
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 126-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the complete group of structure equations of a locally conformally almost cosymplectic structure (an $lc\mathscr{AC_S}$-structure in what follows) and compute the components of the Riemannian curvature tensor on the space of the associated $G$-structure. Normal $lc\mathscr{AC_S}$-structures are studied in more detail. In particular, we prove that the contact analogs of A. Gray's second and third curvature identities hold on normal $lc\mathscr{AC_S}$-manifolds, while the contact analog of A. Gray's first identity holds if and only if the manifold is cosymplectic.
Keywords: locally conformally almost cosymplectic structure, almost contact manifold, Riemann curvature tensor, Gray's identities.
Mots-clés : $G$-structure, conformal transformation, structure equations
@article{MZM_2009_86_1_a9,
     author = {S. V. Kharitonova},
     title = {On the {Geometry} of {Locally} {Conformally} {Almost} {Cosymplectic} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {126--138},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a9/}
}
TY  - JOUR
AU  - S. V. Kharitonova
TI  - On the Geometry of Locally Conformally Almost Cosymplectic Manifolds
JO  - Matematičeskie zametki
PY  - 2009
SP  - 126
EP  - 138
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a9/
LA  - ru
ID  - MZM_2009_86_1_a9
ER  - 
%0 Journal Article
%A S. V. Kharitonova
%T On the Geometry of Locally Conformally Almost Cosymplectic Manifolds
%J Matematičeskie zametki
%D 2009
%P 126-138
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a9/
%G ru
%F MZM_2009_86_1_a9
S. V. Kharitonova. On the Geometry of Locally Conformally Almost Cosymplectic Manifolds. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 126-138. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a9/

[1] Z. Olszak, “Locally conformal almost cosymplectic manifolds”, Colloq. Math., 57:1 (1989), 73–87 | MR | Zbl

[2] K. Matsumoto, I. Mihai, R. Roşca, “A certain locally conformal almost cosymplectic manifolds and its submanifolds”, Tensor (N.S.), 51:1 (1992), 91–102 | MR | Zbl

[3] D. W. Yoon, K. S. Cho, S. G. Han, “Some inequalities for warped products in locally conformal almost cosymplectic manifolds”, Note Mat., 23:1 (2004/05), 51–60 | MR | Zbl

[4] R. L. Bishop, R. Dzh. Krittenden, Geometriya mnogoobrazii, Mir, M., 1967 | MR | Zbl

[5] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[6] A. Gray, “Curvature identities for Hermitian and almost Hermitian manifolds”, Tôhoku Math. J. (2), 28:4 (1976), 601–612 | DOI | MR | Zbl

[7] S. Sasaki, Y. Hatakeyama, “On differentiable manifolds with certain structures which are closely related to almost contact structure, II”, Tôhoku Math. J. (2), 13:2 (1961), 281–294 | DOI | MR | Zbl

[8] V. F. Kirichenko, N. S. Baklashova, “Geometriya kontaktnoi formy Li i kontaktnyi analog teoremy Ikuty”, Matem. zametki, 82:3 (2007), 347–360 | MR | Zbl

[9] S. I. Goldberg, “Totally geodesic hypersurfaces of Kaehler manifolds”, Pacific J. Math., 27:2 (1968), 275–281 | MR | Zbl

[10] S. I. Goldberg, K. Yano, “Integrability of almost cosymplectic structures”, Pacific J. Math., 31:2 (1969), 373–382 | MR | Zbl

[11] V. F. Kirichenko, “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh struktur”, Itogi nauki i tekhn. Ser. Probl. geom., 18, VINITI, M., 1986, 25–71 | MR | Zbl

[12] A. Gray, L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123:1 (1980), 35–58 | DOI | MR | Zbl

[13] V. F. Kirichenko, “Obobschennye klassy Greya–Khervelly i golomorfno-proektivnye preobrazovaniya obobschennykh pochti ermitovykh struktur”, Izv. RAN. Ser. matem., 69:5 (2005), 107–132 | MR | Zbl

[14] V. F. Kirichenko, A. R. Rustanov, “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | MR | Zbl

[15] D. Chinea, J. C. Marrero, “Classification of almost contact metric structures”, Rev. Roumaine Math. Pures Appl., 37:3 (1992), 199–211 | MR | Zbl

[16] E. S. Volkova, “Tozhdestva krivizny normalnykh mnogoobrazii killingova tipa”, Matem. zametki, 62:3 (1997), 351–362 | MR | Zbl

[17] V. F. Kirichenko, I. V.Tretyakova, “O postoyanstve tipa pochti ermitovykh mnogoobrazii”, Matem. zametki, 68:5 (2000), 668–676 | MR | Zbl