Approximation of Coincidence Points and Common Fixed Points of a Collection of Mappings of Metric Spaces
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 110-125
Voir la notice de l'article provenant de la source Math-Net.Ru
On a complete metric space $X$, we solve the problem of constructing an algorithm (in general, nonunique) of successive approximations from any point in space to a given closed subset $A$. We give an estimate of the distance from an arbitrary initial point to the corresponding limit points. We consider three versions of the subset $A$: (1) $A$ is the complete preimage of a closed subspace $H$ under a mapping from $X$ into the metric space $Y$; (2) $A$ is the set of coincidence points of $n$ ($n>1$) mappings from $X$ into $Y$; (3) $A$ is the set of common fixed points of $n$ mappings of $X$ into itself ($n=1,2,\dots$). The problems under consideration are stated conveniently in terms of a multicascade, i.e., of a generalized discrete dynamical system with phase space $X$, translation semigroup equal to the additive semigroup of nonnegative integers, and the limit set $A$. In particular, in case (2) for $n=2$, we obtain a generalization of Arutyunov's theorem on the coincidences of two mappings. In case (3) for $n=1$, we obtain a generalization of the contraction mapping principle.
Keywords:
metric space, successive approximations, coincidence point, fixed point, discrete dynamical system, translation semigroup, contraction mapping principle.
@article{MZM_2009_86_1_a8,
author = {T. N. Fomenko},
title = {Approximation of {Coincidence} {Points} and {Common} {Fixed} {Points} of a {Collection} of {Mappings} of {Metric} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {110--125},
publisher = {mathdoc},
volume = {86},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a8/}
}
TY - JOUR AU - T. N. Fomenko TI - Approximation of Coincidence Points and Common Fixed Points of a Collection of Mappings of Metric Spaces JO - Matematičeskie zametki PY - 2009 SP - 110 EP - 125 VL - 86 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a8/ LA - ru ID - MZM_2009_86_1_a8 ER -
T. N. Fomenko. Approximation of Coincidence Points and Common Fixed Points of a Collection of Mappings of Metric Spaces. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 110-125. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a8/