Approximation of Coincidence Points and Common Fixed Points of a Collection of Mappings of Metric Spaces
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 110-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a complete metric space $X$, we solve the problem of constructing an algorithm (in general, nonunique) of successive approximations from any point in space to a given closed subset $A$. We give an estimate of the distance from an arbitrary initial point to the corresponding limit points. We consider three versions of the subset $A$: (1) $A$ is the complete preimage of a closed subspace $H$ under a mapping from $X$ into the metric space $Y$; (2) $A$ is the set of coincidence points of $n$ ($n>1$) mappings from $X$ into $Y$; (3) $A$ is the set of common fixed points of $n$ mappings of $X$ into itself ($n=1,2,\dots$). The problems under consideration are stated conveniently in terms of a multicascade, i.e., of a generalized discrete dynamical system with phase space $X$, translation semigroup equal to the additive semigroup of nonnegative integers, and the limit set $A$. In particular, in case (2) for $n=2$, we obtain a generalization of Arutyunov's theorem on the coincidences of two mappings. In case (3) for $n=1$, we obtain a generalization of the contraction mapping principle.
Keywords: metric space, successive approximations, coincidence point, fixed point, discrete dynamical system, translation semigroup, contraction mapping principle.
@article{MZM_2009_86_1_a8,
     author = {T. N. Fomenko},
     title = {Approximation of {Coincidence} {Points} and {Common} {Fixed} {Points} of a {Collection} of {Mappings} of {Metric} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {110--125},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a8/}
}
TY  - JOUR
AU  - T. N. Fomenko
TI  - Approximation of Coincidence Points and Common Fixed Points of a Collection of Mappings of Metric Spaces
JO  - Matematičeskie zametki
PY  - 2009
SP  - 110
EP  - 125
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a8/
LA  - ru
ID  - MZM_2009_86_1_a8
ER  - 
%0 Journal Article
%A T. N. Fomenko
%T Approximation of Coincidence Points and Common Fixed Points of a Collection of Mappings of Metric Spaces
%J Matematičeskie zametki
%D 2009
%P 110-125
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a8/
%G ru
%F MZM_2009_86_1_a8
T. N. Fomenko. Approximation of Coincidence Points and Common Fixed Points of a Collection of Mappings of Metric Spaces. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 110-125. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a8/

[1] A. Granas, J. Dugundji, Fixed Point Theory, Springer Monogr. Math., Springer-Verlag, New York, 2003 | MR | Zbl

[2] A. Aliouche, A. Djoudi, “Common fixed point theorems for mappings satisfying an implicit relation without decreasing assumption”, Hacet. J. Math. Stat., 36:1 (2007), 11–18 | MR | Zbl

[3] N. Hussain, B. E. Rhoades, G. Jungck, “Common fixed point and invariant approximation results for Gregus type $I$-contractions”, Numer. Funct. Anal. Optim., 28:9–10 (2007), 1139–1151 | MR | Zbl

[4] K. Iséki, “On common fixed point theorems of mappings”, Proc. Japan Acad., 50:7 (1974), 468–469 | DOI | MR | Zbl

[5] A. V. Arutyunov, “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. RAN, 416:2 (2007), 151–155 | MR | Zbl

[6] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR | Zbl