Pad\'e--Faber Approximation of Markov Functions on Real-Symmetric Compact Sets
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 81-94

Voir la notice de l'article provenant de la source Math-Net.Ru

Study of Padé–Faber approximation (generalizations of the Padé approximation and the Padé–Chebyshev approximation) of Markov functions are important not only from the point of view of mathematical analysis, but also of computational mathematics. The theorem on the existence of subdiagonal approximants is constructively proved. Various estimates of the approximation error are given. Theoretical assertions are illustrated by simulation results.
Keywords: Padé–Faber approximation, Markov function, Padé–Chebyshev approximation, subdiagonal approximant, Lanczos process, Faber operator, extended complex plane.
@article{MZM_2009_86_1_a6,
     author = {L. A. Knizhnerman},
     title = {Pad\'e--Faber {Approximation} of {Markov} {Functions} on {Real-Symmetric} {Compact} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a6/}
}
TY  - JOUR
AU  - L. A. Knizhnerman
TI  - Pad\'e--Faber Approximation of Markov Functions on Real-Symmetric Compact Sets
JO  - Matematičeskie zametki
PY  - 2009
SP  - 81
EP  - 94
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a6/
LA  - ru
ID  - MZM_2009_86_1_a6
ER  - 
%0 Journal Article
%A L. A. Knizhnerman
%T Pad\'e--Faber Approximation of Markov Functions on Real-Symmetric Compact Sets
%J Matematičeskie zametki
%D 2009
%P 81-94
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a6/
%G ru
%F MZM_2009_86_1_a6
L. A. Knizhnerman. Pad\'e--Faber Approximation of Markov Functions on Real-Symmetric Compact Sets. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a6/