Pad\'e--Faber Approximation of Markov Functions on Real-Symmetric Compact Sets
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 81-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Study of Padé–Faber approximation (generalizations of the Padé approximation and the Padé–Chebyshev approximation) of Markov functions are important not only from the point of view of mathematical analysis, but also of computational mathematics. The theorem on the existence of subdiagonal approximants is constructively proved. Various estimates of the approximation error are given. Theoretical assertions are illustrated by simulation results.
Keywords: Padé–Faber approximation, Markov function, Padé–Chebyshev approximation, subdiagonal approximant, Lanczos process, Faber operator, extended complex plane.
@article{MZM_2009_86_1_a6,
     author = {L. A. Knizhnerman},
     title = {Pad\'e--Faber {Approximation} of {Markov} {Functions} on {Real-Symmetric} {Compact} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a6/}
}
TY  - JOUR
AU  - L. A. Knizhnerman
TI  - Pad\'e--Faber Approximation of Markov Functions on Real-Symmetric Compact Sets
JO  - Matematičeskie zametki
PY  - 2009
SP  - 81
EP  - 94
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a6/
LA  - ru
ID  - MZM_2009_86_1_a6
ER  - 
%0 Journal Article
%A L. A. Knizhnerman
%T Pad\'e--Faber Approximation of Markov Functions on Real-Symmetric Compact Sets
%J Matematičeskie zametki
%D 2009
%P 81-94
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a6/
%G ru
%F MZM_2009_86_1_a6
L. A. Knizhnerman. Pad\'e--Faber Approximation of Markov Functions on Real-Symmetric Compact Sets. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a6/

[1] S. P. Suetin, “O teoreme Montessu de Bolora dlya nelineinykh approksimatsii Pade ortogonalnykh razlozhenii i ryadov Fabera”, Dokl. AN SSSR, 253:6 (1980), 1322–1325 | MR | Zbl

[2] S. W. Ellacott, “On the Faber transform and efficient numerical rational approximation”, SIAM J. Numer. Anal., 20:5 (1983), 989–1000 | DOI | MR | Zbl

[3] S. P. Suetin, “O suschestvovanii nelineinykh approksimatsii Pade–Chebysheva dlya analiticheskikh funktsii”, Matem. zametki, 86:2 (2009), 290–303 | MR

[4] G. A. Baker, Jr., P. Graves-Morris, Padé Approximants, Addison-Wesley Publ., London, 1996 | MR | Zbl

[5] I. S. Kats, M. G. Krein, “O spektralnykh funktsiyakh struny”, F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 613–733 | MR | Zbl

[6] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[7] V. Druskin, L. Knizhnerman, “Gaussian spectral rules for the three-point second differences. I. A two-point positive definite problem in a semi-infinite domain”, SIAM J. Numer. Anal., 37:2 (1999), 403–422 | DOI | MR | Zbl

[8] R. S. Varga, A. Ruttan, A. D. Karpenter, “Chislennye rezultaty o nailuchshikh ravnomernykh ratsionalnykh approksimatsiyakh funktsii $|x|$ na otrezke $[-1,1]$”, Matem. sb., 182:11 (1991), 1523–1541 | MR | Zbl

[9] P. P. Petrushev, V. A. Popov, Rational Approximation of Real Functions, Encyclopedia Math. Appl., 28, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[10] R. S. Varga, Scientific Computation on Mathematical Problems and Conjectures, CBMS-NSF Regional Conf. Ser. in Appl. Math., 60, SIAM, Philadelphia, PA, 1990 | MR | Zbl

[11] L. N. Trefethen, M. H. Gutknecht, “The Carathéodory–Fejér method for real rational approximation”, SIAM J. Numer. Anal., 20:2 (1983), 420–436 | DOI | MR | Zbl

[12] G. H. Golub, G. Meurant, “Matrices, moments and quadrature”, Numerical analysis 1993 (Dundee, 1993), Pitman Res. Notes Math. Ser., 303, Longman Sci. Tech., Harlow, 1994, 105–156 | MR | Zbl

[13] G. H. Golub, Z. Strakoš, “Estimates in quadratic formulas”, Numer. Algorithms, 8:2 (1994), 241–268 | DOI | MR | Zbl

[14] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics Appl. Math., 20, SIAM, Philadelphia, PA, 1998 | MR | Zbl

[15] Zh. Bai, G. Golub, “Computation of large-scale quadratic forms and transfer functions using the theory of moments, quadrature and Padé approximation”, Modern Methods in Scientific Computing and Applications (Montréal, QC, 2001), NATO Sci. Ser. II Math. Phys. Chem., 75, Kluwer Acad. Publ., Dordrecht, 2002, 1–30 | MR | Zbl

[16] W. B. Gragg, “Matrix interpretations and applications of the continued fraction algorithm”, Rocky Mountain J. Math., 4:2 (1974), 213–225 | MR | Zbl

[17] P. Feldmann, R. W. Freund, “Efficient linear circuit analysis by Padé approximation via the Lanczos process”, IEEE Trans. Comput. Aided Design Integrated Circuits Syst., 14:5 (1995), 639–649 | DOI | MR

[18] Zh. Bai, Q. Ye, “Error estimation of the Padé approximation of transfer functions via the Lanczos process”, Electron. Trans. Numer. Anal., 7 (1998), 1–17 | MR | Zbl

[19] P. K. Suetin, Ryady po mnogochlenam Fabera, Nauka, M., 1984 | MR | Zbl

[20] D. Gaier, “The Faber operator and its boundedness”, J. Approx. Theory, 101:2 (1999), 265–277 | DOI | MR | Zbl

[21] G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971 | MR | Zbl

[22] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[23] H. Stahl, V. Totik, General Orthogonal Polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[24] B. Simon, Orthogonal Polynomials on the Unit Circle, Amer. Math. Soc. Colloq. Publ., 54, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[25] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer-Verlag, New York, 1992, 169–190 | MR | Zbl