Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_1_a6, author = {L. A. Knizhnerman}, title = {Pad\'e--Faber {Approximation} of {Markov} {Functions} on {Real-Symmetric} {Compact} {Sets}}, journal = {Matemati\v{c}eskie zametki}, pages = {81--94}, publisher = {mathdoc}, volume = {86}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a6/} }
L. A. Knizhnerman. Pad\'e--Faber Approximation of Markov Functions on Real-Symmetric Compact Sets. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a6/
[1] S. P. Suetin, “O teoreme Montessu de Bolora dlya nelineinykh approksimatsii Pade ortogonalnykh razlozhenii i ryadov Fabera”, Dokl. AN SSSR, 253:6 (1980), 1322–1325 | MR | Zbl
[2] S. W. Ellacott, “On the Faber transform and efficient numerical rational approximation”, SIAM J. Numer. Anal., 20:5 (1983), 989–1000 | DOI | MR | Zbl
[3] S. P. Suetin, “O suschestvovanii nelineinykh approksimatsii Pade–Chebysheva dlya analiticheskikh funktsii”, Matem. zametki, 86:2 (2009), 290–303 | MR
[4] G. A. Baker, Jr., P. Graves-Morris, Padé Approximants, Addison-Wesley Publ., London, 1996 | MR | Zbl
[5] I. S. Kats, M. G. Krein, “O spektralnykh funktsiyakh struny”, F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 613–733 | MR | Zbl
[6] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[7] V. Druskin, L. Knizhnerman, “Gaussian spectral rules for the three-point second differences. I. A two-point positive definite problem in a semi-infinite domain”, SIAM J. Numer. Anal., 37:2 (1999), 403–422 | DOI | MR | Zbl
[8] R. S. Varga, A. Ruttan, A. D. Karpenter, “Chislennye rezultaty o nailuchshikh ravnomernykh ratsionalnykh approksimatsiyakh funktsii $|x|$ na otrezke $[-1,1]$”, Matem. sb., 182:11 (1991), 1523–1541 | MR | Zbl
[9] P. P. Petrushev, V. A. Popov, Rational Approximation of Real Functions, Encyclopedia Math. Appl., 28, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[10] R. S. Varga, Scientific Computation on Mathematical Problems and Conjectures, CBMS-NSF Regional Conf. Ser. in Appl. Math., 60, SIAM, Philadelphia, PA, 1990 | MR | Zbl
[11] L. N. Trefethen, M. H. Gutknecht, “The Carathéodory–Fejér method for real rational approximation”, SIAM J. Numer. Anal., 20:2 (1983), 420–436 | DOI | MR | Zbl
[12] G. H. Golub, G. Meurant, “Matrices, moments and quadrature”, Numerical analysis 1993 (Dundee, 1993), Pitman Res. Notes Math. Ser., 303, Longman Sci. Tech., Harlow, 1994, 105–156 | MR | Zbl
[13] G. H. Golub, Z. Strakoš, “Estimates in quadratic formulas”, Numer. Algorithms, 8:2 (1994), 241–268 | DOI | MR | Zbl
[14] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics Appl. Math., 20, SIAM, Philadelphia, PA, 1998 | MR | Zbl
[15] Zh. Bai, G. Golub, “Computation of large-scale quadratic forms and transfer functions using the theory of moments, quadrature and Padé approximation”, Modern Methods in Scientific Computing and Applications (Montréal, QC, 2001), NATO Sci. Ser. II Math. Phys. Chem., 75, Kluwer Acad. Publ., Dordrecht, 2002, 1–30 | MR | Zbl
[16] W. B. Gragg, “Matrix interpretations and applications of the continued fraction algorithm”, Rocky Mountain J. Math., 4:2 (1974), 213–225 | MR | Zbl
[17] P. Feldmann, R. W. Freund, “Efficient linear circuit analysis by Padé approximation via the Lanczos process”, IEEE Trans. Comput. Aided Design Integrated Circuits Syst., 14:5 (1995), 639–649 | DOI | MR
[18] Zh. Bai, Q. Ye, “Error estimation of the Padé approximation of transfer functions via the Lanczos process”, Electron. Trans. Numer. Anal., 7 (1998), 1–17 | MR | Zbl
[19] P. K. Suetin, Ryady po mnogochlenam Fabera, Nauka, M., 1984 | MR | Zbl
[20] D. Gaier, “The Faber operator and its boundedness”, J. Approx. Theory, 101:2 (1999), 265–277 | DOI | MR | Zbl
[21] G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971 | MR | Zbl
[22] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl
[23] H. Stahl, V. Totik, General Orthogonal Polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[24] B. Simon, Orthogonal Polynomials on the Unit Circle, Amer. Math. Soc. Colloq. Publ., 54, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[25] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer-Verlag, New York, 1992, 169–190 | MR | Zbl