Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_1_a5, author = {M. V. Ignat'ev}, title = {Orthogonal {Subsets} of {Classical} {Root} {Systems} and {Coadjoint} {Orbits} of {Unipotent} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {65--80}, publisher = {mathdoc}, volume = {86}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a5/} }
M. V. Ignat'ev. Orthogonal Subsets of Classical Root Systems and Coadjoint Orbits of Unipotent Groups. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 65-80. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a5/
[1] A. A. Kirillov, Lektsii po metodu orbit, Universitetskaya seriya, 10, Nauchnaya kniga, Novosibirsk, 2002 | MR | Zbl
[2] D. Kazhdan, “Proof of Springer's hypothesis”, Israel J. Math., 28:4 (1977), 272–286 | DOI | MR | Zbl
[3] A. N. Panov, “Involyutsii v $S_n$ i assotsiirovannye koprisoedinënnye orbity”, Voprosy teorii predstavlenii algebr i grupp. 16, Zap. nauchn. sem. POMI, 349, POMI, SPb., 2007, 150–173
[4] M. V. Ignatev, “Bazisnye podsistemy v sistemakh kornei $B_n$ i $D_n$ i assotsiirovannye koprisoedinennye orbity”, Vestn. SamGU. Estestvennonauchn. ser., 2008, no. 3, 124–148 | MR
[5] B. Srinivasan, Representations of Finite Chevalley Groups. A Survey, Lecture Notes in Math., 764, Springer-Verlag, Berlin–New York, 1974 | DOI | MR | Zbl
[6] C. A. M. André, A. M. Neto, “Super-characters of finite unipotent groups of types $B_n$, $C_n$ and $D_n$”, J. Algebra, 305:1 (2006), 394–429 | DOI | MR | Zbl
[7] S. Mukherjee, Coadjoint orbits for $A_{n-1}^+$, $B_n^+$ and $D_n^+$, arXiv: math.RT/0501332
[8] N. Burbaki, Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Mir, M., 1972 | MR | Zbl
[9] C. A. M. André, “Basic sums of coadjoint orbits of the unitriangular group”, J. Algebra, 176:3 (1995), 959–1000 | DOI | MR | Zbl