Orthogonal Subsets of Classical Root Systems and Coadjoint Orbits of Unipotent Groups
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 65-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a specific class of coadjoint orbits of maximal unipotent subgroups in classical groups over a finite field, i.e., orbits associated with orthogonal subsets in root systems. We derive a formula for the dimension of these orbits in terms of the Weyl group and construct polarizations for canonical forms on the orbits. As a consequence, we describe all possible dimensions of irreducible representations of such unipotent groups.
Keywords: root system, polarization, Weyl group, irreducible representation, irreducible complex character, polarization of linear forms.
Mots-clés : coadjoint orbits, unipotent group
@article{MZM_2009_86_1_a5,
     author = {M. V. Ignat'ev},
     title = {Orthogonal {Subsets} of {Classical} {Root} {Systems} and {Coadjoint} {Orbits} of {Unipotent} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a5/}
}
TY  - JOUR
AU  - M. V. Ignat'ev
TI  - Orthogonal Subsets of Classical Root Systems and Coadjoint Orbits of Unipotent Groups
JO  - Matematičeskie zametki
PY  - 2009
SP  - 65
EP  - 80
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a5/
LA  - ru
ID  - MZM_2009_86_1_a5
ER  - 
%0 Journal Article
%A M. V. Ignat'ev
%T Orthogonal Subsets of Classical Root Systems and Coadjoint Orbits of Unipotent Groups
%J Matematičeskie zametki
%D 2009
%P 65-80
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a5/
%G ru
%F MZM_2009_86_1_a5
M. V. Ignat'ev. Orthogonal Subsets of Classical Root Systems and Coadjoint Orbits of Unipotent Groups. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 65-80. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a5/

[1] A. A. Kirillov, Lektsii po metodu orbit, Universitetskaya seriya, 10, Nauchnaya kniga, Novosibirsk, 2002 | MR | Zbl

[2] D. Kazhdan, “Proof of Springer's hypothesis”, Israel J. Math., 28:4 (1977), 272–286 | DOI | MR | Zbl

[3] A. N. Panov, “Involyutsii v $S_n$ i assotsiirovannye koprisoedinënnye orbity”, Voprosy teorii predstavlenii algebr i grupp. 16, Zap. nauchn. sem. POMI, 349, POMI, SPb., 2007, 150–173

[4] M. V. Ignatev, “Bazisnye podsistemy v sistemakh kornei $B_n$ i $D_n$ i assotsiirovannye koprisoedinennye orbity”, Vestn. SamGU. Estestvennonauchn. ser., 2008, no. 3, 124–148 | MR

[5] B. Srinivasan, Representations of Finite Chevalley Groups. A Survey, Lecture Notes in Math., 764, Springer-Verlag, Berlin–New York, 1974 | DOI | MR | Zbl

[6] C. A. M. André, A. M. Neto, “Super-characters of finite unipotent groups of types $B_n$, $C_n$ and $D_n$”, J. Algebra, 305:1 (2006), 394–429 | DOI | MR | Zbl

[7] S. Mukherjee, Coadjoint orbits for $A_{n-1}^+$, $B_n^+$ and $D_n^+$, arXiv: math.RT/0501332

[8] N. Burbaki, Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Mir, M., 1972 | MR | Zbl

[9] C. A. M. André, “Basic sums of coadjoint orbits of the unitriangular group”, J. Algebra, 176:3 (1995), 959–1000 | DOI | MR | Zbl