On the Number of $A$-Mappings
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 139-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\mathfrak S_n$ is the semigroup of mappings of the set of $n$ elements into itself, $A$ is a fixed subset of the set of natural numbers $\mathbb N$, and $V_n(A)$ is the set of mappings from $\mathfrak S_n$ whose contours are of sizes belonging to $A$. Mappings from $V_n(A)$ are usually called $A$-mappings. Consider a random mapping $\sigma_n$, uniformly distributed on $V_n(A)$. Suppose that $\nu_n$ is the number of components and $\lambda_n$ is the number of cyclic points of the random mapping $\sigma_n$. In this paper, for a particular class of sets $A$, we obtain the asymptotics of the number of elements of the set $V_n(A)$ and prove limit theorems for the random variables $\nu_n$ and $\lambda_n$ as $n\to\infty$.
Keywords: $A$-mapping, symmetric semigroup of mappings, random mapping, random variable, Euler gamma function, uniform distribution.
@article{MZM_2009_86_1_a10,
     author = {A. L. Yakymiv},
     title = {On the {Number} of $A${-Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {139--147},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a10/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - On the Number of $A$-Mappings
JO  - Matematičeskie zametki
PY  - 2009
SP  - 139
EP  - 147
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a10/
LA  - ru
ID  - MZM_2009_86_1_a10
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T On the Number of $A$-Mappings
%J Matematičeskie zametki
%D 2009
%P 139-147
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a10/
%G ru
%F MZM_2009_86_1_a10
A. L. Yakymiv. On the Number of $A$-Mappings. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 139-147. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a10/

[1] V. N. Sachkov, Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977

[2] V. N. Sachkov, Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978 | MR | Zbl

[3] V. N. Sachkov, Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004

[4] E. A. Bender, “Asymptotic methods in enumeration”, SIAM Rev., 16:4 (1974), 485–515 | DOI | MR | Zbl

[5] Yu. V. Bolotnikov, V. N. Sachkov, V. E. Tarakanov, “Asimptoticheskaya normalnost nekotorykh velichin, svyazannykh s tsiklovoi strukturoi sluchainykh podstanovok”, Matem. sb., 99:1 (1976), 121–133 | MR | Zbl

[6] L. M. Volynets, “Primer nestandartnoi asimptotiki chisla podstanovok s ogranicheniyami na dliny tsiklov”, Veroyatnostnye protsessy i ikh prilozheniya, MIEM, M., 1989, 85–90 | MR

[7] A. A. Grusho, “Properties of random permutations with constraints on the maximum cycle length”, Probabilistic Methods in Discrete Mathematics (Petrozavodsk, 1992), Progr. Pure Appl. Discrete Math., 1, VSP, Utrecht, 1993, 60–63 | MR | Zbl

[8] G. I. Ivchenko, Yu. I. Medvedev, “O sluchainykh podstanovkakh”, Trudy po diskretnoi matematike, T. 5, Fizmatlit, M., 2002, 73–92

[9] A. V. Kolchin, “Uravneniya, soderzhaschie neizvestnuyu podstanovku”, Diskret. matem., 6:1 (1994), 100–115 | MR | Zbl

[10] V. F. Kolchin, “The number of permutations with cycle lengths from a fixed set”, Random Grafs, Vol. 2 (Poznań, Poland, 1989), Wiley-Intersci. Publ., Wiley, New York, 1992, 139–149 | MR | Zbl

[11] E. Manstavičius, “On random permutations without cycles of some lengths”, Period. Math. Hungar., 42:1–2 (2001), 37–44 | DOI | MR | Zbl

[12] M. P. Mineev, A. I. Pavlov, “Ob uravnenii v podstanovkakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei. K 85-letiyu so dnya rozhdeniya akademika Ivana Matveevicha Vinogradova, Tr. MIAN, 142, Nauka, M., 1976, 182–194 | MR | Zbl

[13] A. I. Pavlov, “O dvukh klassakh podstanovok s teoretiko-chislovymi ogranicheniyami na dliny tsiklov”, Matem. zametki, 62:6 (1997), 881–891 | MR | Zbl

[14] A. N. Timashëv, “Predelnye teoremy v skhemakh razmeschenii chastits po razlichnym yacheikam s ogranicheniyami na zapolneniya yacheek”, TVP, 49:4 (2004), 712–725 | MR | Zbl

[15] A. L. Yakymiv, Veroyatnostnye prilozheniya Tauberovykh teorem, Fizmatlit, M., 2005 | MR | Zbl

[16] V. N. Sachkov, “Otobrazheniya konechnogo mnozhestva s ogranicheniyami na kontur i vysotu”, TVP, 17:4 (1972), 679–694 | MR | Zbl

[17] V. N. Sachkov, “Sluchainye otobrazheniya ogranichennoi vysoty”, TVP, 18:1 (1973), 122–132 | MR | Zbl

[18] Yu. L. Pavlov, Sluchainye lesa, KNTs RAN, Petrozavodsk, 1996

[19] V. F. Kolchin, Sluchainye otobrazheniya, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1984 | MR | Zbl

[20] V. F. Kolchin, Sluchainye grafy, Teoriya veroyatnostei i matematicheskaya statistika, Fizmatlit, M., 2000 | MR | Zbl

[21] Yu. L. Pavlov, “Predelnye teoremy dlya ob'emov derevev nepomechennogo grafa sluchainogo otobrazheniya”, Diskret. matem., 16:3 (2004), 63–75 | MR | Zbl

[22] B. A. Sevastyanov, “Skhodimost po raspredeleniyu sluchainykh otobrazhenii konechnykh mnozhestv k vetvyaschimsya protsessam”, Diskret. matem., 17:1 (2005), 18–21 | MR | Zbl

[23] I. A. Cheplyukova, “Odin sluchai predelnogo raspredeleniya chisla tsiklicheskikh vershin v sluchainom otobrazhenii”, Diskret. matem., 16:3 (2004), 76–84 | MR | Zbl

[24] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[25] A. L. Yakymiv, “Raspredelenie dliny $m$-go maksimalnogo tsikla sluchainoi $A$-podstanovki”, Diskret. matem., 17:4 (2005), 40–58 | MR | Zbl

[26] A. L. Yakymiv, “Predelnaya teorema dlya obschego chisla tsiklov sluchainoi $A$-podstanovki”, TVP, 52:1 (2007), 69–83 | MR | Zbl

[27] V. S. Vladimirov, B. I. Zavyalov, “Tauberovy teoremy v kvantovoi teorii polya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 15, VINITI, M., 1980, 95–130 | MR | Zbl