Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_1_a0, author = {A. V. Bolsinov and K. M. Zuev}, title = {A {Formal} {Frobenius} {Theorem} and {Argument} {Shift}}, journal = {Matemati\v{c}eskie zametki}, pages = {3--13}, publisher = {mathdoc}, volume = {86}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a0/} }
A. V. Bolsinov; K. M. Zuev. A Formal Frobenius Theorem and Argument Shift. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a0/
[1] A. S. Mischenko, A. T. Fomenko, “Integrirovanie gamiltonovykh sistem s nekommutativnymi simmetriyami”, Trudy seminara po vektornomu i tenzornomu analizu, Vyp. 20, MGU, M., 1981, 5–54 | MR | Zbl
[2] A. S. Mischenko, A. T. Fomenko, “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl
[3] S. T. Sadetov, “Dokazatelstvo gipotezy Mischenko–Fomenko (1981)”, Dokl. RAN, 397:6 (2004), 751–754 | MR
[4] A. V. Bolsinov, “Polnye involyutivnye nabory polinomov v puassonovykh algebrakh: dokazatelstvo gipotezy Mischenko–Fomenko”, Trudy seminara po vektornomu i tenzornomu analizu, Vyp. 26, MGU, M., 2005, 87–109 | Zbl
[5] A. V. Bolsinov, “Kriterii polnoty semeistva funktsii v involyutsii, postroennogo metodom sdviga argumenta”, Dokl. AN SSSR, 301:5 (1988), 1037–1040 | MR | Zbl
[6] A. V. Bolsinov, “Soglasovannye skobki Puassona na algebrakh Li i polnota semeistv funktsii v involyutsii”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 68–92 | MR | Zbl
[7] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl
[8] J. Praught, R. G. Smirnov, “Andrew Lenard: a mystery unraveled”, SIGMA Symmetry Integrability Geom. Methods Appl., 1 (2005), Paper 005, 7 pp | MR | Zbl
[9] I. M. Gelfand, I. Zakharevich, Webs, Lenard schemes, and the Local Geometry of Bihamiltonian Toda and Lax Structures, arXiv: math.DG/9903080
[10] I. M. Gelfand, I. S. Zakharevich, “Spektralnaya teoriya puchka kososimmetricheskikh differentsialnykh operatorov 3-go poryadka na $S^1$”, Funkts. analiz i ego pril., 23:2 (1989), 1–11 | MR | Zbl
[11] R. C. Thompson, “Pencils of complex and real symmetric and skew matrices”, Linear Algebra Appl., 147 (1991), 323–371 | DOI | MR | Zbl