A Formal Frobenius Theorem and Argument Shift
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

A formal Frobenius theorem, which is an analog of the classical integrability theorem for smooth distributions, is proved and applied to generalize the argument shift method of A. S. Mishchenko and A. T. Fomenko to finite-dimensional Lie algebras over any field of characteristic zero. A completeness criterion for a commutative set of polynomials constructed by the formal argument shift method is obtained.
Keywords: formal Frobenius theorem, argument shift, finite-dimensional Lie algebra, complete commutative set of polynomials.
@article{MZM_2009_86_1_a0,
     author = {A. V. Bolsinov and K. M. Zuev},
     title = {A {Formal} {Frobenius} {Theorem} and {Argument} {Shift}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a0/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - K. M. Zuev
TI  - A Formal Frobenius Theorem and Argument Shift
JO  - Matematičeskie zametki
PY  - 2009
SP  - 3
EP  - 13
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a0/
LA  - ru
ID  - MZM_2009_86_1_a0
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A K. M. Zuev
%T A Formal Frobenius Theorem and Argument Shift
%J Matematičeskie zametki
%D 2009
%P 3-13
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a0/
%G ru
%F MZM_2009_86_1_a0
A. V. Bolsinov; K. M. Zuev. A Formal Frobenius Theorem and Argument Shift. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a0/

[1] A. S. Mischenko, A. T. Fomenko, “Integrirovanie gamiltonovykh sistem s nekommutativnymi simmetriyami”, Trudy seminara po vektornomu i tenzornomu analizu, Vyp. 20, MGU, M., 1981, 5–54 | MR | Zbl

[2] A. S. Mischenko, A. T. Fomenko, “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 396–415 | MR | Zbl

[3] S. T. Sadetov, “Dokazatelstvo gipotezy Mischenko–Fomenko (1981)”, Dokl. RAN, 397:6 (2004), 751–754 | MR

[4] A. V. Bolsinov, “Polnye involyutivnye nabory polinomov v puassonovykh algebrakh: dokazatelstvo gipotezy Mischenko–Fomenko”, Trudy seminara po vektornomu i tenzornomu analizu, Vyp. 26, MGU, M., 2005, 87–109 | Zbl

[5] A. V. Bolsinov, “Kriterii polnoty semeistva funktsii v involyutsii, postroennogo metodom sdviga argumenta”, Dokl. AN SSSR, 301:5 (1988), 1037–1040 | MR | Zbl

[6] A. V. Bolsinov, “Soglasovannye skobki Puassona na algebrakh Li i polnota semeistv funktsii v involyutsii”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 68–92 | MR | Zbl

[7] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[8] J. Praught, R. G. Smirnov, “Andrew Lenard: a mystery unraveled”, SIGMA Symmetry Integrability Geom. Methods Appl., 1 (2005), Paper 005, 7 pp | MR | Zbl

[9] I. M. Gelfand, I. Zakharevich, Webs, Lenard schemes, and the Local Geometry of Bihamiltonian Toda and Lax Structures, arXiv: math.DG/9903080

[10] I. M. Gelfand, I. S. Zakharevich, “Spektralnaya teoriya puchka kososimmetricheskikh differentsialnykh operatorov 3-go poryadka na $S^1$”, Funkts. analiz i ego pril., 23:2 (1989), 1–11 | MR | Zbl

[11] R. C. Thompson, “Pencils of complex and real symmetric and skew matrices”, Linear Algebra Appl., 147 (1991), 323–371 | DOI | MR | Zbl