Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_6_a4, author = {V. E. Kim}, title = {Hypercyclicity and {Chaotic} {Character} of {Generalized} {Convolution} {Operators} {Generated} by {Gelfond--Leontev} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {849--856}, publisher = {mathdoc}, volume = {85}, number = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a4/} }
TY - JOUR AU - V. E. Kim TI - Hypercyclicity and Chaotic Character of Generalized Convolution Operators Generated by Gelfond--Leontev Operators JO - Matematičeskie zametki PY - 2009 SP - 849 EP - 856 VL - 85 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a4/ LA - ru ID - MZM_2009_85_6_a4 ER -
V. E. Kim. Hypercyclicity and Chaotic Character of Generalized Convolution Operators Generated by Gelfond--Leontev Operators. Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 849-856. http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a4/
[1] A. O. Gelfond, A. F. Leontev, “Ob odnom obobschenii ryada Fure”, Matem. sb., 29:3 (1951), 477–500 | MR | Zbl
[2] A. F. Leontev, Obobscheniya ryadov eksponent, Nauka, M., 1981 | MR | Zbl
[3] B. Beauzamy, “Un opérateur, sur l'espace de Hilbert, dont tous les polynômes sont hypercycliques”, C. R. Acad. Sci. Paris Ser. I Math., 303:18 (1986), 923–925 | MR | Zbl
[4] K.-G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc. (N.S.), 36:3 (1999), 345–381 | DOI | MR | Zbl
[5] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Stud. Nonlinearity, Addison-Wesley Publ., Redwood City, CA, 1989 | MR | Zbl
[6] G. D. Birkhoff, “Démonstration d'un théorème élémentaire sur les fonctions entiéres”, C. R. Acad. Sci. Paris, 189 (1929), 473–475 | Zbl
[7] G. R. MacLane, “Sequences of derivatives and normal families”, J. Analyse Math., 2:1 (1952), 72–87 | DOI | MR | Zbl
[8] G. Godefroy, J. H. Shapiro, “Operators with dense, invariant, cyclic vector manifolds”, J. Funct. Anal., 98:2 (1991), 229–269 | DOI | MR | Zbl
[9] J. J. Betancor, M. Sifi, K. Triméche, “Hypercyclic and chaotic convolution operators associated with the Dunkl operators on $\mathbb C$”, Acta Math. Hungar., 106:1–2 (2005), 101–116 | DOI | MR | Zbl
[10] C. F. Dunkl, “Differential-difference operators associated with reflections groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl
[11] M. Rösler, “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer-Verlag, Berlin, 2003, 93–135 | DOI | MR | Zbl
[12] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR | Zbl
[13] R. M. Gethner, J. H. Shapiro, “Universal vectors for operators on space of holomorphic functions”, Proc. Amer. Math. Soc., 100:2 (1987), 281–288 | DOI | MR | Zbl
[14] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl
[15] R. M. Kronover, Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000
[16] J. J. Betancor, J. D. Betancor, J. M. Méndez, “Hypercyclic and chaotic convolution operators in Chébli–Trimèche hypergroups”, Rocky Mountain J. Math., 34:4 (2004), 1207–1237 | DOI | MR | Zbl