Hypercyclicity and Chaotic Character of Generalized Convolution Operators Generated by Gelfond--Leontev Operators
Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 849-856.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider generalized convolution operators generated by operators of Gelfond–Leontev generalized differentiation. In this paper, we prove that any such operator not coinciding with the operator of multiplication by a constant is hypercyclic and chaotic on the space of all entire functions. This result generalizes earlier results belonging to the classical convolution operators as well as to the generalized convolution operators constructed by using Dunkl operators.
Keywords: generalized convolution operator, Gelfond–Leontev generalized differentiation, Dunkl operator, topological vector space, generalized Laplace transform
Mots-clés : Fréchet space.
@article{MZM_2009_85_6_a4,
     author = {V. E. Kim},
     title = {Hypercyclicity and {Chaotic} {Character} of {Generalized} {Convolution} {Operators} {Generated} by {Gelfond--Leontev} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {849--856},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a4/}
}
TY  - JOUR
AU  - V. E. Kim
TI  - Hypercyclicity and Chaotic Character of Generalized Convolution Operators Generated by Gelfond--Leontev Operators
JO  - Matematičeskie zametki
PY  - 2009
SP  - 849
EP  - 856
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a4/
LA  - ru
ID  - MZM_2009_85_6_a4
ER  - 
%0 Journal Article
%A V. E. Kim
%T Hypercyclicity and Chaotic Character of Generalized Convolution Operators Generated by Gelfond--Leontev Operators
%J Matematičeskie zametki
%D 2009
%P 849-856
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a4/
%G ru
%F MZM_2009_85_6_a4
V. E. Kim. Hypercyclicity and Chaotic Character of Generalized Convolution Operators Generated by Gelfond--Leontev Operators. Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 849-856. http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a4/

[1] A. O. Gelfond, A. F. Leontev, “Ob odnom obobschenii ryada Fure”, Matem. sb., 29:3 (1951), 477–500 | MR | Zbl

[2] A. F. Leontev, Obobscheniya ryadov eksponent, Nauka, M., 1981 | MR | Zbl

[3] B. Beauzamy, “Un opérateur, sur l'espace de Hilbert, dont tous les polynômes sont hypercycliques”, C. R. Acad. Sci. Paris Ser. I Math., 303:18 (1986), 923–925 | MR | Zbl

[4] K.-G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc. (N.S.), 36:3 (1999), 345–381 | DOI | MR | Zbl

[5] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Stud. Nonlinearity, Addison-Wesley Publ., Redwood City, CA, 1989 | MR | Zbl

[6] G. D. Birkhoff, “Démonstration d'un théorème élémentaire sur les fonctions entiéres”, C. R. Acad. Sci. Paris, 189 (1929), 473–475 | Zbl

[7] G. R. MacLane, “Sequences of derivatives and normal families”, J. Analyse Math., 2:1 (1952), 72–87 | DOI | MR | Zbl

[8] G. Godefroy, J. H. Shapiro, “Operators with dense, invariant, cyclic vector manifolds”, J. Funct. Anal., 98:2 (1991), 229–269 | DOI | MR | Zbl

[9] J. J. Betancor, M. Sifi, K. Triméche, “Hypercyclic and chaotic convolution operators associated with the Dunkl operators on $\mathbb C$”, Acta Math. Hungar., 106:1–2 (2005), 101–116 | DOI | MR | Zbl

[10] C. F. Dunkl, “Differential-difference operators associated with reflections groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl

[11] M. Rösler, “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer-Verlag, Berlin, 2003, 93–135 | DOI | MR | Zbl

[12] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR | Zbl

[13] R. M. Gethner, J. H. Shapiro, “Universal vectors for operators on space of holomorphic functions”, Proc. Amer. Math. Soc., 100:2 (1987), 281–288 | DOI | MR | Zbl

[14] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl

[15] R. M. Kronover, Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000

[16] J. J. Betancor, J. D. Betancor, J. M. Méndez, “Hypercyclic and chaotic convolution operators in Chébli–Trimèche hypergroups”, Rocky Mountain J. Math., 34:4 (2004), 1207–1237 | DOI | MR | Zbl