On Simplicial Partitions of Polytopes
Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 840-848
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove some general properties of prismoids, i.e., polytopes all of whose vertices lie in two parallel planes. On the basis of these properties, we obtain a nontrivial lower bound for the number of simplices in a triangulation of the $n$-dimensional cube.
Mots-clés :
prismoid, simplicial partition, triangulation
Keywords: $(0,1)$-polytope, minimal triangulation, inextensible set.
Keywords: $(0,1)$-polytope, minimal triangulation, inextensible set.
@article{MZM_2009_85_6_a3,
author = {A. A. Glazyrin},
title = {On {Simplicial} {Partitions} of {Polytopes}},
journal = {Matemati\v{c}eskie zametki},
pages = {840--848},
year = {2009},
volume = {85},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a3/}
}
A. A. Glazyrin. On Simplicial Partitions of Polytopes. Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 840-848. http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a3/
[1] J. A. De Loera, Computing minimal and maximal triangulations of convex polyiopes, Manuscript, Institut für Theoretische Informatik, Zürich, 1999
[2] G. M. Ziegler, “Lectures on $0/1$-polytopes”, Polytopes – Combinatorics and Computation (Oberwolfach, 1997), DMV Sem., 29, Birkhäuser-Verlag, Basel, 2000, 1–41 | MR | Zbl
[3] S. N. Bernshtein, Sobranie sochinenii. T. 1. Konstruktivnaya teoriya funktsii, Izd-vo AN SSSR, M., 1952 | MR | Zbl