On Simplicial Partitions of Polytopes
Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 840-848 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove some general properties of prismoids, i.e., polytopes all of whose vertices lie in two parallel planes. On the basis of these properties, we obtain a nontrivial lower bound for the number of simplices in a triangulation of the $n$-dimensional cube.
Mots-clés : prismoid, simplicial partition, triangulation
Keywords: $(0,1)$-polytope, minimal triangulation, inextensible set.
@article{MZM_2009_85_6_a3,
     author = {A. A. Glazyrin},
     title = {On {Simplicial} {Partitions} of {Polytopes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {840--848},
     year = {2009},
     volume = {85},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a3/}
}
TY  - JOUR
AU  - A. A. Glazyrin
TI  - On Simplicial Partitions of Polytopes
JO  - Matematičeskie zametki
PY  - 2009
SP  - 840
EP  - 848
VL  - 85
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a3/
LA  - ru
ID  - MZM_2009_85_6_a3
ER  - 
%0 Journal Article
%A A. A. Glazyrin
%T On Simplicial Partitions of Polytopes
%J Matematičeskie zametki
%D 2009
%P 840-848
%V 85
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a3/
%G ru
%F MZM_2009_85_6_a3
A. A. Glazyrin. On Simplicial Partitions of Polytopes. Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 840-848. http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a3/

[1] J. A. De Loera, Computing minimal and maximal triangulations of convex polyiopes, Manuscript, Institut für Theoretische Informatik, Zürich, 1999

[2] G. M. Ziegler, “Lectures on $0/1$-polytopes”, Polytopes – Combinatorics and Computation (Oberwolfach, 1997), DMV Sem., 29, Birkhäuser-Verlag, Basel, 2000, 1–41 | MR | Zbl

[3] S. N. Bernshtein, Sobranie sochinenii. T. 1. Konstruktivnaya teoriya funktsii, Izd-vo AN SSSR, M., 1952 | MR | Zbl