On Simplicial Partitions of Polytopes
Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 840-848.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove some general properties of prismoids, i.e., polytopes all of whose vertices lie in two parallel planes. On the basis of these properties, we obtain a nontrivial lower bound for the number of simplices in a triangulation of the $n$-dimensional cube.
Mots-clés : prismoid, simplicial partition, triangulation
Keywords: $(0,1)$-polytope, minimal triangulation, inextensible set.
@article{MZM_2009_85_6_a3,
     author = {A. A. Glazyrin},
     title = {On {Simplicial} {Partitions} of {Polytopes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {840--848},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a3/}
}
TY  - JOUR
AU  - A. A. Glazyrin
TI  - On Simplicial Partitions of Polytopes
JO  - Matematičeskie zametki
PY  - 2009
SP  - 840
EP  - 848
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a3/
LA  - ru
ID  - MZM_2009_85_6_a3
ER  - 
%0 Journal Article
%A A. A. Glazyrin
%T On Simplicial Partitions of Polytopes
%J Matematičeskie zametki
%D 2009
%P 840-848
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a3/
%G ru
%F MZM_2009_85_6_a3
A. A. Glazyrin. On Simplicial Partitions of Polytopes. Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 840-848. http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a3/

[1] J. A. De Loera, Computing minimal and maximal triangulations of convex polyiopes, Manuscript, Institut für Theoretische Informatik, Zürich, 1999

[2] G. M. Ziegler, “Lectures on $0/1$-polytopes”, Polytopes – Combinatorics and Computation (Oberwolfach, 1997), DMV Sem., 29, Birkhäuser-Verlag, Basel, 2000, 1–41 | MR | Zbl

[3] S. N. Bernshtein, Sobranie sochinenii. T. 1. Konstruktivnaya teoriya funktsii, Izd-vo AN SSSR, M., 1952 | MR | Zbl