$n$-Extended Quasi-Baer Rings
Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 826-839.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring with unit is said to be an $n$-extended right (principally) quasi-Baer ring if, for any proper (principal) right ideals $I_1,\dots,I_n$, where $n\ge2$, the right annihilator of the product $I_{1}\dotsb I_{n}$ is generated by an idempotent. A ring with unit is said to be an $n$-extended right (left) PP-ring if the right (left, respectively) annihilator of the product $x_1\dotsb x_n$, where $n\ge2$, is generated by an idempotent for any nonidentity elements $x_{1},\dots,x_{n}$. The behavior of $n$-extended right (principally) quasi-Baer rings and right PP-rings under various constructions and extensions is studied. These classes of rings are closed with respect to direct products and Morita equivalences. Examples illustrating the theory and outlining its frontiers are presented.
Keywords: right annihilator, quasi-Baer ring, PP-ring, endomorphism ring, central idempotent of a ring, principal ideal.
Mots-clés : Morita equivalence
@article{MZM_2009_85_6_a2,
     author = {Sh. Ghalandarzadeh and Z. Khoshchehreh},
     title = {$n${-Extended} {Quasi-Baer} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {826--839},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a2/}
}
TY  - JOUR
AU  - Sh. Ghalandarzadeh
AU  - Z. Khoshchehreh
TI  - $n$-Extended Quasi-Baer Rings
JO  - Matematičeskie zametki
PY  - 2009
SP  - 826
EP  - 839
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a2/
LA  - ru
ID  - MZM_2009_85_6_a2
ER  - 
%0 Journal Article
%A Sh. Ghalandarzadeh
%A Z. Khoshchehreh
%T $n$-Extended Quasi-Baer Rings
%J Matematičeskie zametki
%D 2009
%P 826-839
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a2/
%G ru
%F MZM_2009_85_6_a2
Sh. Ghalandarzadeh; Z. Khoshchehreh. $n$-Extended Quasi-Baer Rings. Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 826-839. http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a2/

[1] G. F. Birkenmeier, J. Y. Kim, J. K. Park, “Principally quasi-Baer rings”, Comm. Algebra, 29:2 (2001), 639–660 | DOI | MR | Zbl

[2] C. Huh, H. K. Kim, Y. Lee, “p.p. rings and generalized p.p. rings”, J. Pure Appl. Algebra, 167:1 (2002), 37–52 | DOI | MR | Zbl

[3] A. Moussavi, H. Haj Seyyed Javadi, E. Hashemi, “Generalized quasi-Baer rings”, Comm. Algebra, 33:7 (2005), 2115–2129 | DOI | MR | Zbl