Exact Constants in Generalized Inequalities for Intermediate Derivatives
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 737-744.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the Sobolev space $W_2^n(\mathbb R_+)$ on the semiaxis with norm of general form defined by a quadratic polynomial in derivatives with nonnegative coefficients. We study the problem of exact constants $A_{n,k}$ in inequalities of Kolmogorov type for the values of intermediate derivatives $|f^{(k)}(0)|\le A_{n,k}\|f\|$. In the general case, the expression for the constants $A_{n,k}$ is obtained as the ratio of two determinants. Using a general formula, we obtain an explicit expression for the constants $A_{n,k}$ in the case of the following norms: $$ \|f\|_1^2=\|f\|_{L_2}^2+\|f^{(n)}\|_{L_2}^2\qquad\text{and}\qquad \|f\|_2^2=\sum_{l=0}^n\|f^{(l)}\|_{L_2}^2. $$ In the case of the norm $\|\cdot\|_1$, formulas for the constants $A_{n,k}$ were obtained earlier by another method due to Kalyabin. The asymptotic behavior of the constants $A_{n,k}$ is also studied in the case of the norm $\|\cdot\|_2$. In addition, we prove a symmetry property of the constants $A_{n,k}$ in the general case.
Keywords: Sobolev space, Kolmogorov-type inequalities, intermediate derivative, linear functional in Hilbert space, Cramer's rule.
Mots-clés : Vandermonde matrix
@article{MZM_2009_85_5_a8,
     author = {A. A. Lunev and L. L. Oridoroga},
     title = {Exact {Constants} in {Generalized} {Inequalities} for {Intermediate} {Derivatives}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {737--744},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a8/}
}
TY  - JOUR
AU  - A. A. Lunev
AU  - L. L. Oridoroga
TI  - Exact Constants in Generalized Inequalities for Intermediate Derivatives
JO  - Matematičeskie zametki
PY  - 2009
SP  - 737
EP  - 744
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a8/
LA  - ru
ID  - MZM_2009_85_5_a8
ER  - 
%0 Journal Article
%A A. A. Lunev
%A L. L. Oridoroga
%T Exact Constants in Generalized Inequalities for Intermediate Derivatives
%J Matematičeskie zametki
%D 2009
%P 737-744
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a8/
%G ru
%F MZM_2009_85_5_a8
A. A. Lunev; L. L. Oridoroga. Exact Constants in Generalized Inequalities for Intermediate Derivatives. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 737-744. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a8/

[1] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[2] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003

[3] L. V. Taikov, “Neravenstva tipa Kolmogorova i nailuchshie formuly chislennogo differentsirovaniya”, Matem. zametki, 4:2 (1968), 233–238 | MR | Zbl

[4] V. N. Gabushin, “O nailuchshem priblizhenii operatora differentsirovaniya na poluosi”, Matem. zametki, 6:5 (1969), 573–582 | MR | Zbl

[5] G. A. Kalyabin, “Nailuchshie operatory prodolzheniya dlya sobolevskikh prostranstv na polupryamoi”, Funkts. analiz i ego pril., 36:2 (2002), 28–37 | MR | Zbl

[6] G. A. Kalyabin, “O tochnykh konstantakh v neravenstvakh Kolmogorova dlya prostranstv Soboleva $W_2^n(\mathbb{R_+})$”, Dokl. RAN, 388:2 (2003), 159–161 | MR | Zbl

[7] G. A. Kalyabin, “Tochnye konstanty v neravenstvakh dlya promezhutochnykh proizvodnykh (sluchai Gabushina)”, Funkts. analiz i ego pril., 38:3 (2004), 29–38 | MR | Zbl

[8] A. A. Lunëv, “Tochnye konstanty v neravenstvakh dlya promezhutochnykh proizvodnykh”, Ukr. matem. vestn., 4:3 (2007), 421–433