Monomial Modules and Graded Betti Numbers
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 721-736
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be a field, $S=K[x_1,\dots,x_n]$, the polynomial ring over $K$, and let $F$ be a finitely generated graded free $S$-module with homogeneous basis. Certain invariants, such as the Castelnuovo–Mumford regularity and the graded Betti numbers of submodules of $F$, are studied; in particular, the componentwise linear submodules of $F$ are characterized in terms of their graded Betti numbers.
Keywords:
graded ring, graded module, minimal graded free resolution, graded Betti number, polynomial ring, Gröbner basis, syzygy module.
@article{MZM_2009_85_5_a7,
author = {M. Crupi and G. Restuccia},
title = {Monomial {Modules} and {Graded} {Betti} {Numbers}},
journal = {Matemati\v{c}eskie zametki},
pages = {721--736},
publisher = {mathdoc},
volume = {85},
number = {5},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/}
}
M. Crupi; G. Restuccia. Monomial Modules and Graded Betti Numbers. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 721-736. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/