Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_5_a7, author = {M. Crupi and G. Restuccia}, title = {Monomial {Modules} and {Graded} {Betti} {Numbers}}, journal = {Matemati\v{c}eskie zametki}, pages = {721--736}, publisher = {mathdoc}, volume = {85}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/} }
M. Crupi; G. Restuccia. Monomial Modules and Graded Betti Numbers. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 721-736. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/
[1] D. Eisenbud, Commutative Algebra. With a view towards algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | MR | Zbl
[2] M. Crupi, G. Restuccia, “Monomial modules and graphs”, Rend. Circ. Mat. Palermo (2) Suppl., 77 (2006), 203–216 | MR | Zbl
[3] J. Herzog, T. Hibi, “Componentwise linear ideals”, Nagoya Math. J., 153 (1999), 141–153 | MR | Zbl
[4] K. Pardue, “Deformation classes of graded modules and maximal Betti numbers”, Illinois J. Math., 40:4 (1996), 564–585 | MR | Zbl
[5] J. Herzog, G. Restuccia, “Regularity functions for homogeneous algebras”, Arch. Math. (Basel), 76:2 (2001), 100–108 | DOI | MR | Zbl
[6] M. L. Green, “Generic initial ideals”, Six Lectures on Commutative Algebra (Bellaterra, 1996), Progr. Math., 166, Birkhäuser, Basel, 1998, 119–186 | MR | Zbl
[7] K. Pardue, “Deformation of graded modules and connected loci on the Hilbert scheme”, The Curves Seminar at Queen's, Vol. XI (Kingston, ON, 1997), Queen's Papers in Pure and Appl. Math., 105, Queen's Univ., Kingston, ON, 1997, 131–149 | MR | Zbl
[8] Sh. Eliahou, M. Kervaire, “Minimal resolutions of some monomial ideals”, J. Algebra, 129:1 (1990), 1–25 | DOI | MR | Zbl
[9] A. Aramova, J. Herzog, T. Hibi, “Ideals with stable Betti numbers”, Adv. Math., 152:1 (2000), 72–77 | DOI | MR | Zbl
[10] M. Crupi, R. Utano, “Extremal Betti numbers of lexsegment ideals”, Geometric and Combinatorial Aspects of Commutaive Algebra (Messina, 1999), Lecture Notes in Pure and Appl. Math., 217, Marcel Dekker, New York, 2001, 159–164 | MR | Zbl
[11] D. Bayer, M. Stillman, “A criterion for detecting $m$-regularity”, Invent. Math., 87:1 (1987), 1–11 | DOI | MR | Zbl
[12] T. Römer, On minimal graded free resolutions, Dissertation zur Erlangung des Doktorgrades, Univ. Duisburg-Essen, 2001