Monomial Modules and Graded Betti Numbers
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 721-736.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a field, $S=K[x_1,\dots,x_n]$, the polynomial ring over $K$, and let $F$ be a finitely generated graded free $S$-module with homogeneous basis. Certain invariants, such as the Castelnuovo–Mumford regularity and the graded Betti numbers of submodules of $F$, are studied; in particular, the componentwise linear submodules of $F$ are characterized in terms of their graded Betti numbers.
Keywords: graded ring, graded module, minimal graded free resolution, graded Betti number, polynomial ring, Gröbner basis, syzygy module.
@article{MZM_2009_85_5_a7,
     author = {M. Crupi and G. Restuccia},
     title = {Monomial {Modules} and {Graded} {Betti} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {721--736},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/}
}
TY  - JOUR
AU  - M. Crupi
AU  - G. Restuccia
TI  - Monomial Modules and Graded Betti Numbers
JO  - Matematičeskie zametki
PY  - 2009
SP  - 721
EP  - 736
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/
LA  - ru
ID  - MZM_2009_85_5_a7
ER  - 
%0 Journal Article
%A M. Crupi
%A G. Restuccia
%T Monomial Modules and Graded Betti Numbers
%J Matematičeskie zametki
%D 2009
%P 721-736
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/
%G ru
%F MZM_2009_85_5_a7
M. Crupi; G. Restuccia. Monomial Modules and Graded Betti Numbers. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 721-736. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/

[1] D. Eisenbud, Commutative Algebra. With a view towards algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | MR | Zbl

[2] M. Crupi, G. Restuccia, “Monomial modules and graphs”, Rend. Circ. Mat. Palermo (2) Suppl., 77 (2006), 203–216 | MR | Zbl

[3] J. Herzog, T. Hibi, “Componentwise linear ideals”, Nagoya Math. J., 153 (1999), 141–153 | MR | Zbl

[4] K. Pardue, “Deformation classes of graded modules and maximal Betti numbers”, Illinois J. Math., 40:4 (1996), 564–585 | MR | Zbl

[5] J. Herzog, G. Restuccia, “Regularity functions for homogeneous algebras”, Arch. Math. (Basel), 76:2 (2001), 100–108 | DOI | MR | Zbl

[6] M. L. Green, “Generic initial ideals”, Six Lectures on Commutative Algebra (Bellaterra, 1996), Progr. Math., 166, Birkhäuser, Basel, 1998, 119–186 | MR | Zbl

[7] K. Pardue, “Deformation of graded modules and connected loci on the Hilbert scheme”, The Curves Seminar at Queen's, Vol. XI (Kingston, ON, 1997), Queen's Papers in Pure and Appl. Math., 105, Queen's Univ., Kingston, ON, 1997, 131–149 | MR | Zbl

[8] Sh. Eliahou, M. Kervaire, “Minimal resolutions of some monomial ideals”, J. Algebra, 129:1 (1990), 1–25 | DOI | MR | Zbl

[9] A. Aramova, J. Herzog, T. Hibi, “Ideals with stable Betti numbers”, Adv. Math., 152:1 (2000), 72–77 | DOI | MR | Zbl

[10] M. Crupi, R. Utano, “Extremal Betti numbers of lexsegment ideals”, Geometric and Combinatorial Aspects of Commutaive Algebra (Messina, 1999), Lecture Notes in Pure and Appl. Math., 217, Marcel Dekker, New York, 2001, 159–164 | MR | Zbl

[11] D. Bayer, M. Stillman, “A criterion for detecting $m$-regularity”, Invent. Math., 87:1 (1987), 1–11 | DOI | MR | Zbl

[12] T. Römer, On minimal graded free resolutions, Dissertation zur Erlangung des Doktorgrades, Univ. Duisburg-Essen, 2001