Monomial Modules and Graded Betti Numbers
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 721-736

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a field, $S=K[x_1,\dots,x_n]$, the polynomial ring over $K$, and let $F$ be a finitely generated graded free $S$-module with homogeneous basis. Certain invariants, such as the Castelnuovo–Mumford regularity and the graded Betti numbers of submodules of $F$, are studied; in particular, the componentwise linear submodules of $F$ are characterized in terms of their graded Betti numbers.
Keywords: graded ring, graded module, minimal graded free resolution, graded Betti number, polynomial ring, Gröbner basis, syzygy module.
@article{MZM_2009_85_5_a7,
     author = {M. Crupi and G. Restuccia},
     title = {Monomial {Modules} and {Graded} {Betti} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {721--736},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/}
}
TY  - JOUR
AU  - M. Crupi
AU  - G. Restuccia
TI  - Monomial Modules and Graded Betti Numbers
JO  - Matematičeskie zametki
PY  - 2009
SP  - 721
EP  - 736
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/
LA  - ru
ID  - MZM_2009_85_5_a7
ER  - 
%0 Journal Article
%A M. Crupi
%A G. Restuccia
%T Monomial Modules and Graded Betti Numbers
%J Matematičeskie zametki
%D 2009
%P 721-736
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/
%G ru
%F MZM_2009_85_5_a7
M. Crupi; G. Restuccia. Monomial Modules and Graded Betti Numbers. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 721-736. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a7/