On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm--Liouville Problems
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 671-686.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the Sturm-Liouville operator $$ Ly=-y''+q(x)y, \qquad x\in[0,1], $$ generated in the space $L_2=L_2[0,1]$ by periodic or antiperiodic boundary conditions. Several theorems on the Riesz basis property of the root functions of the operator $L$ are proved. One of the main results is the following. Let $q$ belong to the Sobolev space $W_1^p[0,1]$ for some integer $p\ge0$ and satisfy the conditions $q^{(k)}(0)=q^{(k)}(1)=0$ for $0\le k\le s-1$, where $s\le p$. Let the functions $Q$ and $S$ be defined by the equalities $$ Q(x)=\int_0^xq(t)\,dt,\qquad S(x)=Q^2(x) $$ and let $q_n$, $Q_n$, and $S_n$ be the Fourier coefficients of $q$, $Q$, and $S$ with respect to the trigonometric system $\{e^{2\pi inx}\}_{-\infty}^\infty$. Assume that the sequence $q_{2n}-S_{2n}+2Q_0Q_{2n}$ decreases not faster than the powers $n^{-s-2}$. Then the system of eigenfunctions and associated functions of the operator $L$ generated by periodic boundary conditions forms a Riesz basis in the space $L_2[0,1]$ (provided that the eigenfunctions are normalized) if and only if the condition $$ q_{2n}-S_{2n}+2Q_0Q_{2n}\asymp q_{-2n}-S_{-2n}+2Q_0Q_{-2n},\qquad n>1, $$ holds.
Keywords: periodic Sturm-Liouville problem, Hill operator, Riesz basis, Birkhoff regularity, Fourier series
Mots-clés : Sobolev spaces, Jordan chain.
@article{MZM_2009_85_5_a3,
     author = {O. A. Veliev and A. A. Shkalikov},
     title = {On the {Riesz} {Basis} {Property} of the {Eigen-} and {Associated} {Functions} of {Periodic} and {Antiperiodic} {Sturm--Liouville} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {671--686},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a3/}
}
TY  - JOUR
AU  - O. A. Veliev
AU  - A. A. Shkalikov
TI  - On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm--Liouville Problems
JO  - Matematičeskie zametki
PY  - 2009
SP  - 671
EP  - 686
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a3/
LA  - ru
ID  - MZM_2009_85_5_a3
ER  - 
%0 Journal Article
%A O. A. Veliev
%A A. A. Shkalikov
%T On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm--Liouville Problems
%J Matematičeskie zametki
%D 2009
%P 671-686
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a3/
%G ru
%F MZM_2009_85_5_a3
O. A. Veliev; A. A. Shkalikov. On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm--Liouville Problems. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 671-686. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a3/

[1] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[2] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 2. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, Mir, M., 1966 | MR | Zbl

[3] B. P. Mikhailov, “O bazisakh Rissa v $L_2[0,1]$”, Dokl. AN SSSR, 114:5 (1962), 981–984 | MR | Zbl

[4] G. M. Keselman, “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matem., 1964, no. 2, 82–93 | MR | Zbl

[5] A. A. Shkalikov, “O bazisnosti sobstvennykh funktsii obyknovennogo differentsialnogo operatora”, UMN, 34:5 (1979), 235–236 | MR | Zbl

[6] A. A. Shkalikov, “O svoistve bazisnosti sobstvennykh funktsii obyknovennykh differentsialnykh operatorov s integralnymi kraevymi usloviyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1982, no. 6, 12–21 | MR | Zbl

[7] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[8] P. Dzhakov, B. S. Mityagin, “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, UMN, 61:4 (2006), 77–182 | MR | Zbl

[9] Kh. R. Mamedov, N. B. Kerimov, “O bazisnosti Rissa kornevykh funktsii nekotorykh regulyarnykh kraevykh zadach”, Matem. zametki, 64:4 (1998), 558–563 | MR | Zbl

[10] N. Dernek, O. A. Veliev, “On the Riesz basisness of the root functions of the nonself-adjoint Sturm–Liouville operators”, Israel J. Math., 145:1 (2005), 113–123 | DOI | MR | Zbl

[11] A. C. Makin, “O skhodimosti razlozhenii po kornevym funktsiyam periodicheskoi kraevoi zadachi”, Dokl. RAN, 406:4 (2006), 452–457 | MR | Zbl

[12] P. Djakov, B. Mityagin, “Spectral triangles of Schrödinger operator with complex potentials”, Selecta Math. (N.S.), 9:4 (2003), 495–528 | DOI | MR | Zbl

[13] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl