The Generalized D'Alembert Operator on Compactified Pseudo-Euclidean Space
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 652-660

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the D'Alembert operator in $\mathbb R^n$ with multidimensional time, bordered by operators of multiplication by some function, and subject to an acceptance condition at infinity is a self-adjoint operator with discrete spectrum. The spectrum and eigenfunctions are explicitly described.
Keywords: D'Alembert differential operator, self-adjoint operator, pseudo-Euclidean space, Kelvin transformation, Laplace operator, spherical function.
Mots-clés : conformal transformation group
@article{MZM_2009_85_5_a1,
     author = {A. S. Blagoveshchenskii},
     title = {The {Generalized} {D'Alembert} {Operator} on {Compactified} {Pseudo-Euclidean} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {652--660},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a1/}
}
TY  - JOUR
AU  - A. S. Blagoveshchenskii
TI  - The Generalized D'Alembert Operator on Compactified Pseudo-Euclidean Space
JO  - Matematičeskie zametki
PY  - 2009
SP  - 652
EP  - 660
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a1/
LA  - ru
ID  - MZM_2009_85_5_a1
ER  - 
%0 Journal Article
%A A. S. Blagoveshchenskii
%T The Generalized D'Alembert Operator on Compactified Pseudo-Euclidean Space
%J Matematičeskie zametki
%D 2009
%P 652-660
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a1/
%G ru
%F MZM_2009_85_5_a1
A. S. Blagoveshchenskii. The Generalized D'Alembert Operator on Compactified Pseudo-Euclidean Space. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 652-660. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a1/