Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_5_a1, author = {A. S. Blagoveshchenskii}, title = {The {Generalized} {D'Alembert} {Operator} on {Compactified} {Pseudo-Euclidean} {Space}}, journal = {Matemati\v{c}eskie zametki}, pages = {652--660}, publisher = {mathdoc}, volume = {85}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a1/} }
A. S. Blagoveshchenskii. The Generalized D'Alembert Operator on Compactified Pseudo-Euclidean Space. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 652-660. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a1/
[1] A. S. Blagoveschenskii, “O nekotorykh novykh zadachakh dlya volnovogo uravneniya”, Trudy V Vsesoyuznogo simpoziuma po difraktsii i rasprostraneniyu voln (Leningrad, 13–17 iyunya 1970 g.), Nauka, L., 1971, 29–36
[2] A. S. Blagoveschenskii, A. N. Vasilev, “Nekotorye novye korrektnye zadachi dlya ultragiperbolicheskogo uravneniya”, Vestn. LGU. Ser. matem., mekh., astron., 1976, no. 19, 152–153 | MR | Zbl
[3] R. Penrouz, V. Rindler, Spinory i prostranstvo-vremya. Spinornye i tvistornye metody v geometrii prostranstva-vremeni, Mir, M., 1988 | MR | Zbl
[4] V. A. Dubrovin, S. P. Novikov, A. G. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986 | MR | Zbl
[5] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR | Zbl
[6] A. S. Blagoveschenskii, “O kharakteristicheskoi zadache dlya ultragiperbolicheskogo uravneniya”, Matem. sb., 63:1 (1964), 137–168 | MR | Zbl
[7] I. V. Volovich, V. V. Kozlov, “O summiruemykh s kvadratom resheniyakh uravneniya Kleina–Gordona na mnogoobraziyakh”, Dokl. RAN, 408:3 (2006), 317–320 | MR | Zbl
[8] V. V. Kozlov, I. V. Volovich, “Finite action Klein–Gordon solutions on Lorentzian manifolds”, Int. J. Geom. Methods Mod. Phys., 3:7 (2006), 1349–1357 | DOI | MR | Zbl