Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_5_a0, author = {I. V. Arzhantsev}, title = {On the {Factoriality} of {Cox} rings}, journal = {Matemati\v{c}eskie zametki}, pages = {643--651}, publisher = {mathdoc}, volume = {85}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a0/} }
I. V. Arzhantsev. On the Factoriality of Cox rings. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 643-651. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a0/
[1] D. A. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50 | MR | Zbl
[2] F. Berchtold, J. Hausen, “Homogeneous coordinates for algebraic varieties”, J. Algebra, 266:2 (2003), 636–670 | DOI | MR | Zbl
[3] E. J. Elizondo, K. Kurano, K. Watanabe, “The total coordinate ring of a normal projective variety”, J. Algebra, 276:2 (2004), 625–637 | DOI | MR | Zbl
[4] J. Hausen, Cox rings and combinatorics. II, arXiv: math.AG/0801.3995
[5] D. A. Timashev, Homogeneous spaces and equivariant embeddings, arXiv: math.AG/0602228
[6] F. Knop, H. Kraft, D. Luna, Th. Vust, “Local properties of algebraic group actions”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 63–75 | MR | Zbl
[7] F. D. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory, Lecture Notes in Math., 1673, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[8] P. Samuel, Lectures on unique factorization domains, Notes by M. Pavman Murthy. Tata Inst. Fund. Res. Lectures on Math., 30, Tata Institute of Fundamental Research, Bombay, 1964 | MR | Zbl
[9] V. L. Popov, “Gruppy Pikara odnorodnykh prostranstv lineinykh algebraicheskikh grupp i odnomernye odnorodnye vektornye rassloeniya”, Izv. AN SSSR. Ser. matem., 38:2 (1974), 294–322 | MR | Zbl
[10] I. V. Arzhantsev, J. Hausen, “On embeddings of homogeneous spaces with small boundary”, J. Algebra, 304:2 (2006), 950–988 | DOI | MR | Zbl
[11] M. Brion, “The total coordinate ring of a wonderful variety”, J. Algebra, 313:1 (2007), 61–99 | DOI | MR | Zbl