Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 569-584.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sharp Akhiezer–Krein–Favard-type inequalities for classes of periodic convolutions with kernels that do not increase oscillation are obtained. A large class of approximating odd-dimensional subspaces constructed from uniform shifts of one function with extremal widths is specified. As a corollary, sharp Jackson-type inequalities for the second-order modulus of continuity are derived.
Keywords: Akhiezer–Krein–Favard inequality, periodic convolution, Jackson inequality, second-order modulus of continuity, the space $L_p$, Sobolev class, spline.
@article{MZM_2009_85_4_a6,
     author = {O. L. Vinogradov},
     title = {Sharp {Inequalities} for {Approximations} of {Classes} of {Periodic} {Convolutions} by {Odd-Dimensional} {Subspaces} of {Shifts}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {569--584},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a6/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts
JO  - Matematičeskie zametki
PY  - 2009
SP  - 569
EP  - 584
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a6/
LA  - ru
ID  - MZM_2009_85_4_a6
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts
%J Matematičeskie zametki
%D 2009
%P 569-584
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a6/
%G ru
%F MZM_2009_85_4_a6
O. L. Vinogradov. Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 569-584. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a6/

[1] J. Favard, “Sur les meilleurs procédés d'approximation de certaines classes des fonctions par des polynômes trigonométriques”, Bull. Sci. Math. (2), 61 (1937), 209–224 ; 243–256 | Zbl

[2] N. Akhiezer, M. Krein, “O nailuchshem priblizhenii trigonometricheskimi summami differentsiruemykh periodicheskikh funktsii”, Dokl. AN SSSR, 15 (1937), 107–111 | Zbl

[3] S. M. Nikolskii, “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. matem., 10 (1946), 207–256 | MR | Zbl

[4] V. M. Tikhomirov, “Nailuchshie metody priblizheniya i interpolirovaniya funktsii v prostranstve $C_{[-1,1]}$”, Matem. sb., 80:2 (1969), 290–304 | MR | Zbl

[5] N. P. Korneichuk, “Exact error bound of approximation by interpolating splines on $L$-metric on the classes $W_p^r$ ($1\le p\infty$) of periodic functions”, Anal. Math., 3:2 (1977), 109–117 | DOI | MR | Zbl

[6] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR | Zbl

[7] N. P. Korneichuk, Splainy v teorii priblizheniya, Nauka, M., 1984 | MR | Zbl

[8] A. A. Ligun, “Inequalities for upper bounds of functionals”, Anal. Math., 2:1 (1976), 11–40 | DOI | MR | Zbl

[9] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin–Heidelberg, 1985 | MR | Zbl

[10] V. M. Tikhomirov, “Ob ekstremalnykh podprostranstvakh dlya klassov funktsii, zadavaemykh yadrami, ne povyshayuschimi ostsillyatsiyu”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1997, no. 4, 16–19 | MR | Zbl

[11] V. F. Babenko, “Ekstremalnye zadachi teorii priblizheniya i neravenstva dlya perestanovok”, Dokl. AN SSSR, 290:5 (1986), 1033–1036 | MR | Zbl

[12] V. F. Babenko, “Priblizhenie klassov svertok”, Sib. matem. zhurn., 28:5 (1987), 6–21 | MR | Zbl

[13] V. M. Tikhomirov, “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, UMN, 15:3 (1960), 81–120 | MR | Zbl

[14] O. L. Vinogradov, “Analog summ Akhiezera–Kreina–Favara dlya periodicheskikh splainov minimalnogo defekta”, Problemy matem. analiza, 25 (2003), 29–56 | MR | Zbl

[15] V. L. Velikin, “O predelnoi svyazi mezhdu priblizheniyami periodicheskikh funktsii splainami i trigonometricheskimi polinomami”, Dokl. AN SSSR, 258:3 (1981), 525–529 | MR | Zbl

[16] T. Kh. Nguen Tkhi, “Operator $D(D^2+1^2)\dotsb(D^2+n^2)$ i trigonometricheskaya interpolyatsiya”, Anal. Math., 15:4 (1989), 291–306 | MR | Zbl

[17] S. Karlin, Total Positivity, V. 1, Stanford Univ. Press, Stanford, CA, 1968 | MR | Zbl

[18] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960 | MR | Zbl

[19] A. Zigmund, Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR | Zbl

[20] A. K. Kushpel, “Tochnye otsenki poperechnikov klassov svertok”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1305–1322 | MR | Zbl

[21] V. V. Zhuk, “O nekotorykh tochnykh neravenstvakh mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti”, Vestn. LGU. Ser. matem., mekh., astron., 1974, no. 1, 21–26 | Zbl

[22] V. V. Shalaev, “K voprosu o priblizhenii nepreryvnykh periodicheskikh funktsii trigonometricheskimi polinomami”, Issledovaniya po sovremennym problemam summirovaniya i priblizheniya funktsii i ikh prilozheniyam, Vyp. 8, DGU, Dnepropetrovsk, 1977, 39–43

[23] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, Izd-vo LGU, L., 1982 | MR | Zbl

[24] O. L. Vinogradov, V. V. Zhuk, “Tochnye otsenki otklonenii lineinykh metodov priblizheniya periodicheskikh funktsii posredstvom lineinykh kombinatsii modulei nepreryvnosti razlichnykh poryadkov”, Problemy matem. analiza, 25 (2003), 57–97 | MR | Zbl

[25] O. L. Vinogradov, “Tochnoe neravenstvo tipa Dzheksona dlya priblizhenii splainami i vtorogo modulya nepreryvnosti”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 12-i Saratovskoi zimnei shkoly (Saratov, 27 yanvarya – 3 fevralya 2004 g.), Izd-vo GosUNTs “Kolledzh”, Saratov, 2004, 45–46