Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 569-584

Voir la notice de l'article provenant de la source Math-Net.Ru

Sharp Akhiezer–Krein–Favard-type inequalities for classes of periodic convolutions with kernels that do not increase oscillation are obtained. A large class of approximating odd-dimensional subspaces constructed from uniform shifts of one function with extremal widths is specified. As a corollary, sharp Jackson-type inequalities for the second-order modulus of continuity are derived.
Keywords: Akhiezer–Krein–Favard inequality, periodic convolution, Jackson inequality, second-order modulus of continuity, the space $L_p$, Sobolev class, spline.
@article{MZM_2009_85_4_a6,
     author = {O. L. Vinogradov},
     title = {Sharp {Inequalities} for {Approximations} of {Classes} of {Periodic} {Convolutions} by {Odd-Dimensional} {Subspaces} of {Shifts}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {569--584},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a6/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts
JO  - Matematičeskie zametki
PY  - 2009
SP  - 569
EP  - 584
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a6/
LA  - ru
ID  - MZM_2009_85_4_a6
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts
%J Matematičeskie zametki
%D 2009
%P 569-584
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a6/
%G ru
%F MZM_2009_85_4_a6
O. L. Vinogradov. Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 569-584. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a6/