Analog of the Hadamard Formula for the First Ellipse of Meromorphy
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 552-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $P_n$ are orthonormal polynomials on the closed interval $[-1,1]$ which are constructed from a weight function satisfying the Szegö condition. In this paper, we obtain the first ellipse of meromorphy of the function $F(z)=\sum_{n=0}^\infty F_nP_n(z)$, i.e., the maximal ellipse with foci at the points $\pm1$ to which the function $F$ can be extended as a meromorphic function having at most one pole.
Keywords: meromorphic function, holomorphic function, ellipse of meromorphy, Szegö condition, rational function.
Mots-clés : pole, Cauchy–Hadamard formula
@article{MZM_2009_85_4_a5,
     author = {V. I. Buslaev},
     title = {Analog of the {Hadamard} {Formula} for the {First} {Ellipse} of {Meromorphy}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {552--568},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a5/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Analog of the Hadamard Formula for the First Ellipse of Meromorphy
JO  - Matematičeskie zametki
PY  - 2009
SP  - 552
EP  - 568
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a5/
LA  - ru
ID  - MZM_2009_85_4_a5
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Analog of the Hadamard Formula for the First Ellipse of Meromorphy
%J Matematičeskie zametki
%D 2009
%P 552-568
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a5/
%G ru
%F MZM_2009_85_4_a5
V. I. Buslaev. Analog of the Hadamard Formula for the First Ellipse of Meromorphy. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 552-568. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a5/

[1] J. Hadamard, “Essai sur l'etude des fonctions donnees par leur developpement de Taylor”, J. Math. (4), 8:4 (1892), 101–186 | Zbl

[2] L. Kronecker, “Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen”, Monatsber. Preuss. Akad. Wiss. Berlin, 1881, 535–600 | Zbl

[3] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl

[4] H. Poincaré, “Sur les equations linéaires aux différentielles et aux différences finies”, Amer. J. Math., 7:3 (1885), 203–258 | DOI | MR | Zbl

[5] V. I. Buslaev, “Sootnosheniya dlya koeffitsientov i osobye tochki funktsii”, Matem. sb., 131:3 (1986), 357–384 | MR | Zbl

[6] A. A. Gonchar, “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97:4 (1975), 607–629 | MR | Zbl

[7] S. P. Suetin, “Obratnye teoremy ob obobschennykh approksimatsiyakh Pade”, Matem. sb., 109:4 (1979), 629–646 | MR | Zbl