Hausdorff Measures and Lebesgue Points for the Sobolev Classes~$W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 616-621

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $(X,\mu,d)$ is a space of homogeneous type, where $d$ is the metric and $\mu$ is the measure related by the doubling condition with exponent $\gamma>0$, $W^p_\alpha(X)$, $p>1$, are the generalized Sobolev classes, $\alpha>0$, and $\operatorname{dim_H}$ is the Hausdorff dimension. We prove that, for any function $u\in W^p_\alpha(X)$, $p>1$, $0\alpha\gamma/p$, there exists a set $E\subset X$ such that $\operatorname{dim_H}(E)\le\gamma-\alpha p$ and, for any $x\in X\setminus E$, the limit $$ \lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}u\,d\mu=u^{*}(x) $$ exists; moreover, $$ \lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u-u^{*}(x)|^{q}\,d\mu=0,\qquad \frac{1}{q}=\frac{1}{p}-\frac{\alpha}{\gamma}. $$ For $\alpha=1$, a similar result was obtained earlier by Hajłasz and Kinnunen in 1998. The case $0\alpha\le1$ was studied by the author in 2007; in the proof, the structures of the corresponding capacities were significantly used.
Keywords: Hausdorff measure, Sobolev classes $W^p_\alpha$, Hölder classes $H^\alpha(X)$, Borel measure, Hausdorff capacity
Mots-clés : Lebesgue point, $\alpha>0$, Hausdorff dimension.
@article{MZM_2009_85_4_a10,
     author = {M. A. Prokhorovich},
     title = {Hausdorff {Measures} and {Lebesgue} {Points} for the {Sobolev} {Classes~}$W^p_\alpha$, $\alpha>0$, on {Spaces} of {Homogeneous} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {616--621},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a10/}
}
TY  - JOUR
AU  - M. A. Prokhorovich
TI  - Hausdorff Measures and Lebesgue Points for the Sobolev Classes~$W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type
JO  - Matematičeskie zametki
PY  - 2009
SP  - 616
EP  - 621
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a10/
LA  - ru
ID  - MZM_2009_85_4_a10
ER  - 
%0 Journal Article
%A M. A. Prokhorovich
%T Hausdorff Measures and Lebesgue Points for the Sobolev Classes~$W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type
%J Matematičeskie zametki
%D 2009
%P 616-621
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a10/
%G ru
%F MZM_2009_85_4_a10
M. A. Prokhorovich. Hausdorff Measures and Lebesgue Points for the Sobolev Classes~$W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 616-621. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a10/