Hausdorff Measures and Lebesgue Points for the Sobolev Classes~$W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 616-621.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $(X,\mu,d)$ is a space of homogeneous type, where $d$ is the metric and $\mu$ is the measure related by the doubling condition with exponent $\gamma>0$, $W^p_\alpha(X)$, $p>1$, are the generalized Sobolev classes, $\alpha>0$, and $\operatorname{dim_H}$ is the Hausdorff dimension. We prove that, for any function $u\in W^p_\alpha(X)$, $p>1$, $0\alpha\gamma/p$, there exists a set $E\subset X$ such that $\operatorname{dim_H}(E)\le\gamma-\alpha p$ and, for any $x\in X\setminus E$, the limit $$ \lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}u\,d\mu=u^{*}(x) $$ exists; moreover, $$ \lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u-u^{*}(x)|^{q}\,d\mu=0,\qquad \frac{1}{q}=\frac{1}{p}-\frac{\alpha}{\gamma}. $$ For $\alpha=1$, a similar result was obtained earlier by Hajłasz and Kinnunen in 1998. The case $0\alpha\le1$ was studied by the author in 2007; in the proof, the structures of the corresponding capacities were significantly used.
Keywords: Hausdorff measure, Sobolev classes $W^p_\alpha$, Hölder classes $H^\alpha(X)$, Borel measure, Hausdorff capacity
Mots-clés : Lebesgue point, $\alpha>0$, Hausdorff dimension.
@article{MZM_2009_85_4_a10,
     author = {M. A. Prokhorovich},
     title = {Hausdorff {Measures} and {Lebesgue} {Points} for the {Sobolev} {Classes~}$W^p_\alpha$, $\alpha>0$, on {Spaces} of {Homogeneous} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {616--621},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a10/}
}
TY  - JOUR
AU  - M. A. Prokhorovich
TI  - Hausdorff Measures and Lebesgue Points for the Sobolev Classes~$W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type
JO  - Matematičeskie zametki
PY  - 2009
SP  - 616
EP  - 621
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a10/
LA  - ru
ID  - MZM_2009_85_4_a10
ER  - 
%0 Journal Article
%A M. A. Prokhorovich
%T Hausdorff Measures and Lebesgue Points for the Sobolev Classes~$W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type
%J Matematičeskie zametki
%D 2009
%P 616-621
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a10/
%G ru
%F MZM_2009_85_4_a10
M. A. Prokhorovich. Hausdorff Measures and Lebesgue Points for the Sobolev Classes~$W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 616-621. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a10/

[1] P. Hajłasz, “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl

[2] D. Yang, “New characterization of Hajłasz–Sobolev spaces on metric spaces”, Sci. China Ser. A, 46:5 (2003), 675–689 | DOI | MR | Zbl

[3] I. A. Ivanishko, “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matem. zametki, 77:6 (2005), 937–941 | MR | Zbl

[4] P. Hajłasz, J. Kinnunen, “Hölder quasicontinuity of Sobolev functions on metric spaces”, Rev. Mat. Iberoamericana, 14:3 (1998), 601–622 | MR | Zbl

[5] M. A. Prokhorovich, “Razmernost Khausdorfa mnozhestva Lebega dlya klassov $W_\alpha^p$ na metricheskikh prostranstvakh”, Matem. zametki, 82:1 (2007), 99–107 | MR

[6] A. Jonsson, “Haar wavelets of higher order on fractals and regularity of functions”, J. Math. Anal. Appl., 290:1 (2004), 86–104 | DOI | MR | Zbl

[7] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[8] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 563–582 | MR | Zbl

[9] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[10] H. Federer, W. P. Ziemer, “The Lebesgue sets of a function whose distribution derivatives are $p$-th power summable”, Indiana Univ. Math. J., 22:1 (1972), 139–158 | DOI | MR | Zbl

[11] D. R. Adams, L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin–Heidelberg–New York, 1996 | MR | Zbl

[12] J. Kinnunen, V. Latvala, “Lebesgue points for Sobolev functions on metric spaces”, Rev. Mat. Iberoamericana, 18:3 (2002), 685–700 | MR | Zbl

[13] M. A. Prokhorovich, “Emkosti i tochki Lebega dlya drobnykh klassov Khailasha–Soboleva na metricheskikh prostranstvakh s meroi”, Izv. HAH Belarusi. Ser. fiz.-matem. nauk, 2006, no. 1, 19–23 | MR

[14] I. A. Ivanishko, V. G. Krotov, “Obobschennoe neravenstvo Puankare–Soboleva na metricheskikh prostranstvakh s meroi”, Tr. in-ta matem. NAN Belarusi, 14:1 (2006), 51–61

[15] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl