Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from $\varphi(L)\cap H_1^\omega$
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 502-515

Voir la notice de l'article provenant de la source Math-Net.Ru

For a gap sequence of natural numbers $\{n_k\}^\infty_{k=1}$, for a nondecreasing function $\varphi\colon[0,+\infty)\to[0,+\infty)$ such that $\varphi(u)=o(u\ln\ln u)$ as $u\to\infty$, and a modulus of continuity satisfying the condition $(\ln k)^{-1}=O(\omega(n_k^{-1}))$, we present an example of a function $F\in\varphi(L)\cap H_1^\omega$ with an almost everywhere divergent subsequence $\{S_{n_k}(F,x)\}$ of the sequence of partial sums of the trigonometric Fourier series of the function $F$.
Mots-clés : Fourier sum
Keywords: gap sequence, trigonometric Fourier series, modulus of continuity, Dirichlet kernel, Lebesgue measurability, Jensen's inequality.
@article{MZM_2009_85_4_a1,
     author = {N. Yu. Antonov},
     title = {Almost {Everywhere} {Divergent} {Subsequences} of {Fourier} {Sums} of {Functions} from $\varphi(L)\cap H_1^\omega$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {502--515},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a1/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from $\varphi(L)\cap H_1^\omega$
JO  - Matematičeskie zametki
PY  - 2009
SP  - 502
EP  - 515
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a1/
LA  - ru
ID  - MZM_2009_85_4_a1
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from $\varphi(L)\cap H_1^\omega$
%J Matematičeskie zametki
%D 2009
%P 502-515
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a1/
%G ru
%F MZM_2009_85_4_a1
N. Yu. Antonov. Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from $\varphi(L)\cap H_1^\omega$. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 502-515. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a1/