Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_4_a1, author = {N. Yu. Antonov}, title = {Almost {Everywhere} {Divergent} {Subsequences} of {Fourier} {Sums} of {Functions} from $\varphi(L)\cap H_1^\omega$}, journal = {Matemati\v{c}eskie zametki}, pages = {502--515}, publisher = {mathdoc}, volume = {85}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a1/} }
TY - JOUR AU - N. Yu. Antonov TI - Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from $\varphi(L)\cap H_1^\omega$ JO - Matematičeskie zametki PY - 2009 SP - 502 EP - 515 VL - 85 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a1/ LA - ru ID - MZM_2009_85_4_a1 ER -
N. Yu. Antonov. Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from $\varphi(L)\cap H_1^\omega$. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 502-515. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a1/
[1] A. Kolmogoroff, “Une série de Fourier–Lebesgue divergente presque partout”, Fund. Math., 4 (1923), 324–328 | Zbl
[2] A. Kolmogoroff, “Une série de Fourier–Lebesgue divergente partout”, C. R. Acad. Sci. Paris, 183 (1926), 1327–1328 | Zbl
[3] R. P. Gosselin, “On the divergence of Fourier series”, Proc. Amer. Math. Soc., 9:2 (1958), 278–282 | DOI | MR | Zbl
[4] V. Totik, “On the divergence of Fourier series”, Publ. Math. Debrecen, 29:3–4 (1982), 251–264 | MR | Zbl
[5] S. V. Konyagin, “O raskhodimosti vsyudu podposledovatelnostei chastnykh summ trigonometricheskikh ryadov Fure”, Tr. In-ta matem. i mekh. UrO RAN, 11:2 (2005), 112–119 | MR | Zbl
[6] S. V. Konyagin, “O raskhodimosti vsyudu trigonometricheskikh ryadov Fure”, Matem. sb., 191:1 (2000), 103–126 | MR | Zbl
[7] N. Yu. Antonov, “Convergence of Fourier series”, East J. Approx., 2:2 (1996), 187–196 | MR | Zbl
[8] A. Zigmund, Trigonometricheskie ryady, t. 1, 2, Mir, M., 1965 | MR | Zbl
[9] K. I. Oskolkov, “Podposledovatelnosti summ Fure integriruemykh funktsii”, Sovremennye problemy matematiki. Matematicheskii analiz, algebra, topologiya, Tr. MIAN, 167, Nauka, M., 1985, 239–260 | MR | Zbl
[10] N. Yu. Antonov, “O raskhodimosti podposledovatelnostei summ Fure funktsii s ogranicheniyami na integralnyi modul nepreryvnosti”, Izv. TulGU. Ser. Matem. Mekh. Inform., 12:1 (2006), 12–26
[11] N. Yu. Antonov, “Integriruemost mazhorant summ Fure i raskhodimost ryadov Fure funktsii s ogranicheniyami na integralnyi modul nepreryvnosti”, Matem. zametki, 76:5 (2004), 651–665 | MR | Zbl
[12] Sh. V. Kheladze, “O raskhodimosti vsyudu ryadov Fure funktsii iz klassa $L\varphi(L)$”, Tr. Tbilissk. matem. in-ta, 89 (1988), 51–59 | MR | Zbl
[13] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63:3 (1964), 356–391 | MR | Zbl
[14] N. K. Bari, Trigonometricheskie ryady, GIFML, M., 1961 | MR