The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 408-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a semilinear elliptic equation of second order with variable coefficients of the form $Lu=e^u$ in the semi-infinite cylinder whose solution satisfies a homogeneous Neumann condition on the lateral surface of the cylinder.
Keywords: semilinear elliptic equation, Neumann boundary condition, Dirichlet integral, Poincaré inequality, Hölder's inequality.
@article{MZM_2009_85_3_a8,
     author = {A. V. Neklyudov},
     title = {The {Behavior} of {Solutions} of {Semilinear} {Elliptic} {Equations} of {Second} {Order} of the {Form} $Lu=e^u$ in the {Infinite} {Cylinder}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {408--420},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/}
}
TY  - JOUR
AU  - A. V. Neklyudov
TI  - The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder
JO  - Matematičeskie zametki
PY  - 2009
SP  - 408
EP  - 420
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/
LA  - ru
ID  - MZM_2009_85_3_a8
ER  - 
%0 Journal Article
%A A. V. Neklyudov
%T The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder
%J Matematičeskie zametki
%D 2009
%P 408-420
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/
%G ru
%F MZM_2009_85_3_a8
A. V. Neklyudov. The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 408-420. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/

[1] V. A. Kondratev, O. A. Oleinik, “Ob asimptotike reshenii nelineinykh ellipticheskikh uravnenii”, Mezhdunarodnyi seminar “Differentsialnye uravneniya i smezhnye voprosy” (pyatnadtsataya sessiya sovmestnykh zasedanii seminara im. I. G. Petrovskogo i Moskovskogo matematicheskogo obschestva 19–22 yanvarya 1993 goda), UMN, 48:4 (1993), 184–185

[2] O. Oleinik, Some Asymptotic Problems in the Theory of Partial Differential Equations, Lezioni Lincee, Cambridge, Cambridge Univ. Press, 1996 | MR | Zbl

[3] A. I. Nasrullaev, “Ob asimptotike reshenii zadachi Neimana dlya uravneniya $\Delta u-e^u=0$ v polubeskonechnom tsilindre”, UMN, 50:3 (1995), 161–162 | MR | Zbl

[4] O. A. Oleinik, “Ob uravnenii $\Delta u+k(x)e^u=0$”, UMN, 33:2 (1978), 203–204 | MR | Zbl

[5] A. I. Nasrullaev, “Ob odnom klasse nelineinykh uravnenii v neogranichennykh oblastyakh”, Mezhdunarodnaya konferentsiya “Differentsialnye uravneniya i smezhnye voprosy”, posvyaschennaya 95-letiyu so dnya rozhdeniya I. G. Petrovskogo (sovmestnye zasedaniya seminara imeni I. G. Petrovskogo i Moskovskogo matematicheskogo obschestva; vosemnadtsataya sessiya, 25–29 aprelya 1996 goda), UMN, 51:5 (1996), 160–161

[6] O. A. Oleinik, G. A. Iosifyan, “O povedenii na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnoi granitsei”, Matem. sb., 112:4 (1980), 588–610 | MR | Zbl

[7] A. V. Neklyudov, “O zadache Neimana dlya divergentnykh ellipticheskikh uravnenii vysokogo poryadka v neogranichennoi oblasti, blizkoi k tsilindru”, Tr. sem. im. I. G. Petrovskogo, 16 (1991), 191–217 | MR | Zbl

[8] E. M. Landis, A. I. Ibragimov, “Zadachi Neimana v neogranichennykh oblastyakh”, Dokl. RAN, 343:1 (1995), 17–18 | MR | Zbl

[9] S. S. Lakhturov, “Ob asimptotike reshenii vtoroi kraevoi zadachi v neogranichennykh oblastyakh”, UMN, 35:4 (1980), 195–196 | MR | Zbl