Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_3_a8, author = {A. V. Neklyudov}, title = {The {Behavior} of {Solutions} of {Semilinear} {Elliptic} {Equations} of {Second} {Order} of the {Form} $Lu=e^u$ in the {Infinite} {Cylinder}}, journal = {Matemati\v{c}eskie zametki}, pages = {408--420}, publisher = {mathdoc}, volume = {85}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/} }
TY - JOUR AU - A. V. Neklyudov TI - The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder JO - Matematičeskie zametki PY - 2009 SP - 408 EP - 420 VL - 85 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/ LA - ru ID - MZM_2009_85_3_a8 ER -
%0 Journal Article %A A. V. Neklyudov %T The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder %J Matematičeskie zametki %D 2009 %P 408-420 %V 85 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/ %G ru %F MZM_2009_85_3_a8
A. V. Neklyudov. The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 408-420. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/
[1] V. A. Kondratev, O. A. Oleinik, “Ob asimptotike reshenii nelineinykh ellipticheskikh uravnenii”, Mezhdunarodnyi seminar “Differentsialnye uravneniya i smezhnye voprosy” (pyatnadtsataya sessiya sovmestnykh zasedanii seminara im. I. G. Petrovskogo i Moskovskogo matematicheskogo obschestva 19–22 yanvarya 1993 goda), UMN, 48:4 (1993), 184–185
[2] O. Oleinik, Some Asymptotic Problems in the Theory of Partial Differential Equations, Lezioni Lincee, Cambridge, Cambridge Univ. Press, 1996 | MR | Zbl
[3] A. I. Nasrullaev, “Ob asimptotike reshenii zadachi Neimana dlya uravneniya $\Delta u-e^u=0$ v polubeskonechnom tsilindre”, UMN, 50:3 (1995), 161–162 | MR | Zbl
[4] O. A. Oleinik, “Ob uravnenii $\Delta u+k(x)e^u=0$”, UMN, 33:2 (1978), 203–204 | MR | Zbl
[5] A. I. Nasrullaev, “Ob odnom klasse nelineinykh uravnenii v neogranichennykh oblastyakh”, Mezhdunarodnaya konferentsiya “Differentsialnye uravneniya i smezhnye voprosy”, posvyaschennaya 95-letiyu so dnya rozhdeniya I. G. Petrovskogo (sovmestnye zasedaniya seminara imeni I. G. Petrovskogo i Moskovskogo matematicheskogo obschestva; vosemnadtsataya sessiya, 25–29 aprelya 1996 goda), UMN, 51:5 (1996), 160–161
[6] O. A. Oleinik, G. A. Iosifyan, “O povedenii na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnoi granitsei”, Matem. sb., 112:4 (1980), 588–610 | MR | Zbl
[7] A. V. Neklyudov, “O zadache Neimana dlya divergentnykh ellipticheskikh uravnenii vysokogo poryadka v neogranichennoi oblasti, blizkoi k tsilindru”, Tr. sem. im. I. G. Petrovskogo, 16 (1991), 191–217 | MR | Zbl
[8] E. M. Landis, A. I. Ibragimov, “Zadachi Neimana v neogranichennykh oblastyakh”, Dokl. RAN, 343:1 (1995), 17–18 | MR | Zbl
[9] S. S. Lakhturov, “Ob asimptotike reshenii vtoroi kraevoi zadachi v neogranichennykh oblastyakh”, UMN, 35:4 (1980), 195–196 | MR | Zbl