The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 408-420

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a semilinear elliptic equation of second order with variable coefficients of the form $Lu=e^u$ in the semi-infinite cylinder whose solution satisfies a homogeneous Neumann condition on the lateral surface of the cylinder.
Keywords: semilinear elliptic equation, Neumann boundary condition, Dirichlet integral, Poincaré inequality, Hölder's inequality.
@article{MZM_2009_85_3_a8,
     author = {A. V. Neklyudov},
     title = {The {Behavior} of {Solutions} of {Semilinear} {Elliptic} {Equations} of {Second} {Order} of the {Form} $Lu=e^u$ in the {Infinite} {Cylinder}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {408--420},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/}
}
TY  - JOUR
AU  - A. V. Neklyudov
TI  - The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder
JO  - Matematičeskie zametki
PY  - 2009
SP  - 408
EP  - 420
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/
LA  - ru
ID  - MZM_2009_85_3_a8
ER  - 
%0 Journal Article
%A A. V. Neklyudov
%T The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder
%J Matematičeskie zametki
%D 2009
%P 408-420
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/
%G ru
%F MZM_2009_85_3_a8
A. V. Neklyudov. The Behavior of Solutions of Semilinear Elliptic Equations of Second Order of the Form $Lu=e^u$ in the Infinite Cylinder. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 408-420. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a8/