Instability of Closed Invariant Sets of Semidynamical Systems. Method of Sign-Constant Lyapunov Functions
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 382-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a reduction principle for the instability property of a closed positively invariant set $M$ for semidynamical systems is proved. The fact that the result is untraditional is stressed by the assumption on the existence of a closed positively invariant set with respect to which the set $M$ has the attraction property. The corresponding instability theorem of the method of sign-constant Lyapunov functions is presented. The assertion thus obtained generalizes the well-known Chetaev and Krasovskii theorems for systems of ordinary differential equations, theorems on the instability with respect to some of the variables, and also the Shimanov and Hale theorems for systems with retarded argument. Illustrating examples are presented.
Keywords: semidynamical system, positively invariant set, instability, sign-constant Lyapunov function, global asymptotic stability, attracting set, reduction principle.
@article{MZM_2009_85_3_a6,
     author = {B. S. Kalitin},
     title = {Instability of {Closed} {Invariant} {Sets} of {Semidynamical} {Systems.} {Method} of {Sign-Constant} {Lyapunov} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {382--394},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a6/}
}
TY  - JOUR
AU  - B. S. Kalitin
TI  - Instability of Closed Invariant Sets of Semidynamical Systems. Method of Sign-Constant Lyapunov Functions
JO  - Matematičeskie zametki
PY  - 2009
SP  - 382
EP  - 394
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a6/
LA  - ru
ID  - MZM_2009_85_3_a6
ER  - 
%0 Journal Article
%A B. S. Kalitin
%T Instability of Closed Invariant Sets of Semidynamical Systems. Method of Sign-Constant Lyapunov Functions
%J Matematičeskie zametki
%D 2009
%P 382-394
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a6/
%G ru
%F MZM_2009_85_3_a6
B. S. Kalitin. Instability of Closed Invariant Sets of Semidynamical Systems. Method of Sign-Constant Lyapunov Functions. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 382-394. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a6/

[1] V. I. Zubov, Ustoichivost dvizheniya. Metody Lyapunova i ikh primenenie, Vysshaya shkola, M., 1984 | MR

[2] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950 | MR | Zbl

[3] N. P. Bhatia, G. P. Szegö, Stability Theory of Dynamical Systems, Grundlehren Math. Wiss., 161, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | Zbl

[4] A. M. Samoilenko, Elementy matematicheskoi teorii mnogochastotnykh kolebanii. Invariantnye tory, Nauka, M., 1987 | MR | Zbl

[5] N. G. Bulgakov, B. S. Kalitin, “Obobschenie teorem vtorogo metoda Lyapunova. I. Teoriya”, Izv. AN BSSR. Ser. Fiz.-matem. nauk, 1978, no. 3, 32–36 | MR | Zbl

[6] B. S. Kalitin, “Razvitie metoda znakopostoyannykh funktsii Lyapunova”, Vybranyya navukovyya pratsy BDU. T. Matematyka, BDU, Minsk, 2001, 232–257

[7] B. S. Kalitin, “Ustoichivost zamknutykh invariantnykh mnozhestv poludinamicheskikh sistem. Metod znakopostoyannykh funktsii Lyapunova”, Differents. uravneniya, 38:11 (2002), 1565–1566 | MR | Zbl

[8] B. Kalitine, “Sur le théorème de la stabilit'e non asymptotique dans la méthode directe de Lyapunov”, C. R. Math. Acad. Sci. Paris, 338:2 (2004), 163–166 | MR | Zbl

[9] J.-C. Vivalda, B. S. Kalitin, “LaSalle's invariance principle and method of semi definite functions”, Vestn. Belorus. gos. un-ta. Ser. 1. Fiz. Matem. Inform., 2006, no. 1, 62–67 | MR

[10] A. S. Andreev, Ustoichivost neavtonomnykh funktsionalno-differentsialnykh uravnenii, UlGU, Ulyanovsk, 2005

[11] Ya. S. Baris, O. B. Lykova, “Integralnye mnogoobraziya i printsip svedeniya v teorii ustoichivosti. I”, Ukr. matem. zhurn., 41:12 (1989), 1607–1613 | MR | Zbl

[12] P. Seibert, “Printsip svedeniya v teorii ustoichivosti dinamicheskikh i poludinamicheskikh sistem”, Matem. zametki, 56:3 (1994), 134–143 | MR | Zbl

[13] P. Seibert, “Relative stability and stability of closed sets”, Seminar on Differential Equations and Dynamical Systems. II, Lecture Notes in Math., 144, Springer-Verlag, Berlin–Heidelberg–New York, 1970, 185–189 | DOI | MR | Zbl

[14] P. Seibert, J. S. Florio, “On the reduction to a subspace of stability properties of systems in metric space”, Ann. Mat. Pura Appl. (4), 169:1 (1995), 291–320 | DOI | MR | Zbl

[15] B. S. Kalitin, “K zadache Florio–Seiberta”, Differents. uravneniya, 25:4 (1989), 727–729 | MR | Zbl

[16] B. S. Kalitin, “$B$-ustoichivost i problema Florio–Seiberta”, Differents. uravneniya, 35:4 (1999), 453–463 | MR | Zbl

[17] N. G. Chetaev, Ustoichivost dvizheniya, GITTL, M., 1955 | MR | Zbl

[18] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, GIFML, M., 1959 | MR | Zbl

[19] V. V. Rumyantsev, A. S. Oziraner, Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987 | MR | Zbl

[20] S. N. Shimanov, “O neustoichivosti dvizheniya sistemy s zapazdyvaniem po vremeni”, PMM, 24:1 (1960), 55–63 | MR | Zbl

[21] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR | Zbl

[22] S. H. Saperstone, Semidynamical Systems in Infinite-Dimentional Spaces, Appl. Math. Sci., 37, Springer-Verlag, New York–Berlin, 1981 | MR | Zbl

[23] K. S. Sibirskii, A. S. Shube, Poludinamicheskie sistemy. Topologicheskaya teoriya, Shtiintsa, Kishinev, 1987 | MR | Zbl

[24] N. Rush, P. Abets, M. Lalua, Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980 | MR | Zbl

[25] J. P. LaSalle, The Stability of Dynamical Systems, With an appendix: “Limiting equations and stability of nonautonomous ordinary differential equations” by Z. Artstein, CBMS-NSF Regional Conf. Ser. in Appl. Math., 25, Soc. Ind. Appl. Math., Philadelphia, Pa., 1976 | MR | Zbl