The Inverse Scattering Problem for a Perturbed Difference Hill Equation
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 456-469.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse scattering problem for the difference analog of a perturbed Hill equation. The perturbation coefficients are recovered from the periodic coefficients and from the scattering data.
Keywords: inverse scattering problem, difference equation, Hill equation, perturbed Hill equation, discrete analog of the Hill equation, recovery problem.
@article{MZM_2009_85_3_a13,
     author = {Ag. Kh. Khanmamedov},
     title = {The {Inverse} {Scattering} {Problem} for a {Perturbed} {Difference} {Hill} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {456--469},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a13/}
}
TY  - JOUR
AU  - Ag. Kh. Khanmamedov
TI  - The Inverse Scattering Problem for a Perturbed Difference Hill Equation
JO  - Matematičeskie zametki
PY  - 2009
SP  - 456
EP  - 469
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a13/
LA  - ru
ID  - MZM_2009_85_3_a13
ER  - 
%0 Journal Article
%A Ag. Kh. Khanmamedov
%T The Inverse Scattering Problem for a Perturbed Difference Hill Equation
%J Matematičeskie zametki
%D 2009
%P 456-469
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a13/
%G ru
%F MZM_2009_85_3_a13
Ag. Kh. Khanmamedov. The Inverse Scattering Problem for a Perturbed Difference Hill Equation. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 456-469. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a13/

[1] R. G. Newton, “Inverse scattering by a local impurity in a periodic potential in one dimension”, J. Math. Phys., 24:8 (1983), 2152–2162 | DOI | MR | Zbl

[2] N. E. Firsova, “Pryamaya i obratnaya zadacha rasseyaniya dlya odnomernogo vozmuschennogo operatora Khilla”, Matem. sb., 130:3 (1986), 349–385 | MR | Zbl

[3] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl

[4] J. S. Geronimo, W. Van Assche, “Orthogonal polynomials with asymptoticaly periodic recurrence coefficients”, J. Approx. Theory, 46:3 (1986), 251–283 | DOI | MR | Zbl

[5] Ag. Kh. Khanmamedov, “K spektralnoi teorii raznostnogo uravneniya s periodicheskimi koeffitsientami”, Vestn. BGU. Ser. fiz.-matem. nauki, 1 (2001), 124–130

[6] A. Kh. Khanmamedov, “Operatory preobrazovaniya dlya vozmuschennogo raznostnogo uravneniya Khilla i ikh odno prilozhenie”, Sib. matem. zhurn., 44:4 (2003), 926–937 | MR | Zbl

[7] K. M. Case, M. Kac, “A discrete version of the inverse scattering problem”, J. Math. Phys., 14:5 (1973), 594–603 | DOI | MR

[8] G. Sh. Guseinov, Obratnye zadachi teorii rasseyaniya dlya samosopryazhennykh raznostnykh operatorov vtorogo poryadka, Dis. $\dots$ kand. fiz.-matem. nauk, M., MGU, 1976

[9] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surveys Monogr., 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[10] M. Toda, Teoriya nelineinykh reshetok, Mir, M., 1984 | MR | Zbl

[11] L. A. Lyusternik, V. I. Sobolev, Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR | Zbl

[12] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M., 1950 | MR | Zbl