Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_2_a7, author = {A. Yu. Popov}, title = {On the {Least} {Type} of an {Entire} {Function} of {Order~}$\rho$ with {Roots} of a {Given} {Upper} $\rho${-Density} {Lying} on {One} {Ray}}, journal = {Matemati\v{c}eskie zametki}, pages = {246--260}, publisher = {mathdoc}, volume = {85}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a7/} }
TY - JOUR AU - A. Yu. Popov TI - On the Least Type of an Entire Function of Order~$\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray JO - Matematičeskie zametki PY - 2009 SP - 246 EP - 260 VL - 85 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a7/ LA - ru ID - MZM_2009_85_2_a7 ER -
A. Yu. Popov. On the Least Type of an Entire Function of Order~$\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray. Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 246-260. http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a7/
[1] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, GITTL, M., 1956 | MR | Zbl
[2] A. Yu. Popov, “Naimenshii vozmozhnyi tip pri poryadke $\rho1$ kanonicheskikh proizvedenii s polozhitelnymi nulyami zadannoi verkhnei $\rho$-plotnosti”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2005, no. 1, 31–36 | MR | Zbl
[3] A. Denjoy, “Sur les produits canoniques d'ordre infini”, J. Math. (6), 6 (1910), 1–136 | Zbl