On the Least Type of an Entire Function of Order~$\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray
Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 246-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the least possible type from the class of entire functions of prescribed order $\rho$ with upper root density 1 (for the exponent $\rho$) is $1/(e\rho)$. The author has proved that if all the roots of entire functions lie on one ray, then the situation is different: the least type for such a class on the set of orders $(1,+\infty)\setminus\mathbb N$ is distinct from zero and is bounded above.
Keywords: entire function, least type of an entire function, upper density of a sequence, Lindelöf theorem.
@article{MZM_2009_85_2_a7,
     author = {A. Yu. Popov},
     title = {On the {Least} {Type} of an {Entire} {Function} of {Order~}$\rho$ with {Roots} of a {Given} {Upper} $\rho${-Density} {Lying} on {One} {Ray}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {246--260},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a7/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - On the Least Type of an Entire Function of Order~$\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray
JO  - Matematičeskie zametki
PY  - 2009
SP  - 246
EP  - 260
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a7/
LA  - ru
ID  - MZM_2009_85_2_a7
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T On the Least Type of an Entire Function of Order~$\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray
%J Matematičeskie zametki
%D 2009
%P 246-260
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a7/
%G ru
%F MZM_2009_85_2_a7
A. Yu. Popov. On the Least Type of an Entire Function of Order~$\rho$ with Roots of a Given Upper $\rho$-Density Lying on One Ray. Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 246-260. http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a7/

[1] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, GITTL, M., 1956 | MR | Zbl

[2] A. Yu. Popov, “Naimenshii vozmozhnyi tip pri poryadke $\rho1$ kanonicheskikh proizvedenii s polozhitelnymi nulyami zadannoi verkhnei $\rho$-plotnosti”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2005, no. 1, 31–36 | MR | Zbl

[3] A. Denjoy, “Sur les produits canoniques d'ordre infini”, J. Math. (6), 6 (1910), 1–136 | Zbl