The Linearity Coefficient of the Metric Projection onto a Chebyshev Subspace
Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 180-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linearity coefficient $\lambda(Y)$ of a metric projection $P_Y$ onto a subspace $Y$ in a Banach space $X$ is determined. This coefficient turns out to be related to the Lipschitz norm of the operator $P_Y$. It is proved that, for any Chebyshev subspace $Y$ in the space $C$ or $L_1$, either $\lambda(Y)=1$ (which corresponds to the linearity of $P_Y$) or $\lambda(Y)\le 1/2$.
Keywords: metric projection, linearity coefficient, Chebyshev subspace, Lipschitz norm.
@article{MZM_2009_85_2_a1,
     author = {P. A. Borodin},
     title = {The {Linearity} {Coefficient} of the {Metric} {Projection} onto a {Chebyshev} {Subspace}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {180--188},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - The Linearity Coefficient of the Metric Projection onto a Chebyshev Subspace
JO  - Matematičeskie zametki
PY  - 2009
SP  - 180
EP  - 188
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a1/
LA  - ru
ID  - MZM_2009_85_2_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%T The Linearity Coefficient of the Metric Projection onto a Chebyshev Subspace
%J Matematičeskie zametki
%D 2009
%P 180-188
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a1/
%G ru
%F MZM_2009_85_2_a1
P. A. Borodin. The Linearity Coefficient of the Metric Projection onto a Chebyshev Subspace. Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 180-188. http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a1/

[1] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Grundlehren Math. Wiss., 171, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | Zbl

[2] E. W. Cheney, D. E. Wulbert, “The existence and unicity of best approximation”, Math. Scand., 24:1 (1969), 113–140 | MR | Zbl

[3] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR

[4] P. D. Morris, “Chebyshev subspaces of $L_1$ with linear metric projection”, J. Approx. Theory, 29:3 (1980), 231–234 | DOI | MR | Zbl

[5] P. V. Galkin, “O module nepreryvnosti operatora nailuchshego priblizheniya v prostranstve nepreryvnykh funktsii”, Matem. zametki, 10 (1971), 601–613 | MR | Zbl

[6] J. Lindenstrauss, “On nonlinear projections in Banach spaces”, Michigan Math. J., 11:3 (1964), 263–287 | DOI | MR | Zbl

[7] R. C. James, “Characterizations of reflexivity”, Studia Math., 23:3 (1964), 205–216 | MR | Zbl

[8] J. Lindenstrauss, L. Tzafriri, “On the complemented subspaces problem”, Israel J. Math., 9:2 (1971), 263–269 | DOI | MR | Zbl

[9] P. V. Albrekht, “Poryadki modulei nepreryvnosti operatorov pochti nailuchshego priblizheniya”, Matem. sb., 185:9 (1994), 3–28 | MR | Zbl

[10] A. L. Garkavi, “Teoriya nailuchshego priblizheniya v lineinykh normirovannykh prostranstvakh”, Itogi nauki. Ser. Matematika. Mat. anal. 1967, VINITI, M., 1969, 75–132 | MR | Zbl

[11] P. A. Borodin, “O lineinosti operatora metricheskogo proektirovaniya na chebyshevskie podprostranstva v prostranstvakh $L_1$ i $C$”, Matem. zametki, 63:6 (1998), 812–820 | MR | Zbl

[12] P. A. Borodin, “Approksimativnye svoistva podprostranstv v prostranstvakh tipa $\mathbf c$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2002, no. 5, 54–58 | MR | Zbl

[13] K. Borsuk, “Drei Sätze über die $n$-dimensionale euclidische Sphäre”, Fund. Math., 20 (1933), 177–190 | Zbl

[14] P. D. Morris, “Metric projections onto subspaces of finite codimension”, Duke Math. J., 35:4 (1968), 799–808 | DOI | MR | Zbl

[15] A. K. Cline, “Lipschitz conditions on uniform approximation operators”, J. Approx. Theory, 8:2 (1973), 160–172 | DOI | MR | Zbl

[16] V. I. Berdyshev, “Metricheskaya proektsiya na konechnomernye podprostranstva iz $C$ i $L$”, Matem. zametki, 18:4 (1975), 473–488 | MR | Zbl

[17] D. E. Wulbert, “Convergence of operators and Korovkin's theorem”, J. Approx. Theory, 1:3 (1968), 381–390 | DOI | MR | Zbl