Keywords: holomorphic function, Bautin ideal, Dulac ideal, polydisk, germ of an analytic function, Noetherian ring, maximum principle.
@article{MZM_2009_85_1_a9,
author = {A. Yu. Fishkin},
title = {On the {Number} of {Zeros} of an {Analytic} {Perturbation} of the {Identically} {Zero} {Function} on a {Compact} {Set}},
journal = {Matemati\v{c}eskie zametki},
pages = {110--118},
year = {2009},
volume = {85},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a9/}
}
A. Yu. Fishkin. On the Number of Zeros of an Analytic Perturbation of the Identically Zero Function on a Compact Set. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 110-118. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a9/
[1] M. Erve, Funktsii mnogikh kompleksnykh peremennykh: Lokalnaya teoriya, Mir, M., 1965 | MR | Zbl
[2] Yu. Ilyashenko, A. Panov, “Some upper estimates of the number of limit cycles of planar vector fields with applications to Liénard equation”, Mosc. Math. J., 1:4 (2001), 583–599 | MR | Zbl
[3] Yu. Ilyashenko, S. Yakovenko, Lectures on Analytic Differential Equations, Grad. Stud. Math., 86, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[4] Yu. Il'yashenko, S. Yakovenko, “Counting real zeroes of analytic functions satisfying linear differential equations”, J. Differential Equations, 126:1 (1996), 87–105 | DOI | MR | Zbl
[5] R. Roussarie, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Progr. Math., 164, Birghäuser, Basel, 1998 | MR | Zbl
[6] H. Dulac, “Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un centre”, Bull. Sci. Math. (2), 32 (1908), 230–252
[7] N. N. Bautin, “O chisle predelnykh tsiklov, rozhdayuschikhsya pri izmenenii koeffitsientov iz sostoyaniya ravnovesiya tipa fokus ili tsentr”, Dokl. AN SSSR, 24:7 (1939), 669–672 | MR | Zbl
[8] N. N. Bautin, “O chisle predelnykh tsiklov, poyavlyayuschikhsya pri izmenenii koeffitsientov iz sostoyaniya ravnovesiya tipa fokusa ili tsentra”, Matem. sb., 30:1 (1952), 181–196 | MR | Zbl