On the Number of Zeros of an Analytic Perturbation of the Identically Zero Function on a Compact Set
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 110-118
Voir la notice de l'article provenant de la source Math-Net.Ru
An upper bound for the number of isolated zeros of an analytic perturbation $f(z,t)$ of the function $f(z,0)\equiv0$ on a compact set $\{z\in K\Subset\mathbb C\}$ is obtained for small values of the parameter
$t\in\mathbb C^n$. The bound depends on an information about the Bautin ideal for the Taylor expansion of the function $f$ with respect to $z$ at one point of the compact set $K$ (e.g., at $0$) and on the maximal absolute value of $f$ in a neighborhood of $K$.
Mots-clés :
analytic perturbation
Keywords: holomorphic function, Bautin ideal, Dulac ideal, polydisk, germ of an analytic function, Noetherian ring, maximum principle.
Keywords: holomorphic function, Bautin ideal, Dulac ideal, polydisk, germ of an analytic function, Noetherian ring, maximum principle.
@article{MZM_2009_85_1_a9,
author = {A. Yu. Fishkin},
title = {On the {Number} of {Zeros} of an {Analytic} {Perturbation} of the {Identically} {Zero} {Function} on a {Compact} {Set}},
journal = {Matemati\v{c}eskie zametki},
pages = {110--118},
publisher = {mathdoc},
volume = {85},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a9/}
}
TY - JOUR AU - A. Yu. Fishkin TI - On the Number of Zeros of an Analytic Perturbation of the Identically Zero Function on a Compact Set JO - Matematičeskie zametki PY - 2009 SP - 110 EP - 118 VL - 85 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a9/ LA - ru ID - MZM_2009_85_1_a9 ER -
A. Yu. Fishkin. On the Number of Zeros of an Analytic Perturbation of the Identically Zero Function on a Compact Set. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 110-118. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a9/