On the Number of Zeros of an Analytic Perturbation of the Identically Zero Function on a Compact Set
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 110-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the number of isolated zeros of an analytic perturbation $f(z,t)$ of the function $f(z,0)\equiv0$ on a compact set $\{z\in K\Subset\mathbb C\}$ is obtained for small values of the parameter $t\in\mathbb C^n$. The bound depends on an information about the Bautin ideal for the Taylor expansion of the function $f$ with respect to $z$ at one point of the compact set $K$ (e.g., at $0$) and on the maximal absolute value of $f$ in a neighborhood of $K$.
Mots-clés : analytic perturbation
Keywords: holomorphic function, Bautin ideal, Dulac ideal, polydisk, germ of an analytic function, Noetherian ring, maximum principle.
@article{MZM_2009_85_1_a9,
     author = {A. Yu. Fishkin},
     title = {On the {Number} of {Zeros} of an {Analytic} {Perturbation} of the {Identically} {Zero} {Function} on a {Compact} {Set}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {110--118},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a9/}
}
TY  - JOUR
AU  - A. Yu. Fishkin
TI  - On the Number of Zeros of an Analytic Perturbation of the Identically Zero Function on a Compact Set
JO  - Matematičeskie zametki
PY  - 2009
SP  - 110
EP  - 118
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a9/
LA  - ru
ID  - MZM_2009_85_1_a9
ER  - 
%0 Journal Article
%A A. Yu. Fishkin
%T On the Number of Zeros of an Analytic Perturbation of the Identically Zero Function on a Compact Set
%J Matematičeskie zametki
%D 2009
%P 110-118
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a9/
%G ru
%F MZM_2009_85_1_a9
A. Yu. Fishkin. On the Number of Zeros of an Analytic Perturbation of the Identically Zero Function on a Compact Set. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 110-118. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a9/

[1] M. Erve, Funktsii mnogikh kompleksnykh peremennykh: Lokalnaya teoriya, Mir, M., 1965 | MR | Zbl

[2] Yu. Ilyashenko, A. Panov, “Some upper estimates of the number of limit cycles of planar vector fields with applications to Liénard equation”, Mosc. Math. J., 1:4 (2001), 583–599 | MR | Zbl

[3] Yu. Ilyashenko, S. Yakovenko, Lectures on Analytic Differential Equations, Grad. Stud. Math., 86, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[4] Yu. Il'yashenko, S. Yakovenko, “Counting real zeroes of analytic functions satisfying linear differential equations”, J. Differential Equations, 126:1 (1996), 87–105 | DOI | MR | Zbl

[5] R. Roussarie, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Progr. Math., 164, Birghäuser, Basel, 1998 | MR | Zbl

[6] H. Dulac, “Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un centre”, Bull. Sci. Math. (2), 32 (1908), 230–252

[7] N. N. Bautin, “O chisle predelnykh tsiklov, rozhdayuschikhsya pri izmenenii koeffitsientov iz sostoyaniya ravnovesiya tipa fokus ili tsentr”, Dokl. AN SSSR, 24:7 (1939), 669–672 | MR | Zbl

[8] N. N. Bautin, “O chisle predelnykh tsiklov, poyavlyayuschikhsya pri izmenenii koeffitsientov iz sostoyaniya ravnovesiya tipa fokusa ili tsentra”, Matem. sb., 30:1 (1952), 181–196 | MR | Zbl