Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_1_a6, author = {A. Maevskiy}, title = {Algorithm for {Calculating} the {Roots} of {Polynomials} with {Coefficients} in the {Ring} of {Polynomials} over an {Arbitrary} {Integral} {Domain}}, journal = {Matemati\v{c}eskie zametki}, pages = {73--88}, publisher = {mathdoc}, volume = {85}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a6/} }
TY - JOUR AU - A. Maevskiy TI - Algorithm for Calculating the Roots of Polynomials with Coefficients in the Ring of Polynomials over an Arbitrary Integral Domain JO - Matematičeskie zametki PY - 2009 SP - 73 EP - 88 VL - 85 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a6/ LA - ru ID - MZM_2009_85_1_a6 ER -
%0 Journal Article %A A. Maevskiy %T Algorithm for Calculating the Roots of Polynomials with Coefficients in the Ring of Polynomials over an Arbitrary Integral Domain %J Matematičeskie zametki %D 2009 %P 73-88 %V 85 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a6/ %G ru %F MZM_2009_85_1_a6
A. Maevskiy. Algorithm for Calculating the Roots of Polynomials with Coefficients in the Ring of Polynomials over an Arbitrary Integral Domain. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 73-88. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a6/
[1] R. M. Roth, G. Ruckenstein, “Efficient decoding of Reed–Solomon codes beyond half the minimum distance”, IEEE Trans. Inform. Theory, 46:1 (2000), 246–257 | DOI | MR | Zbl
[2] H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math., 138, Springer-Verlag, Berlin, 1996 | MR | Zbl
[3] V. Guruswami, List Decoding of Error-Correcting Codes, Winning thesis of the 2002 ACM Doctoral Dissertation Competition, Lecture Notes in Comput. Sci., 3282, Springer-Verlag, Berlin, 2004 | Zbl
[4] A. E. Maevskii, “Algoritm spisochnogo dekodirovaniya odnogo klassa algebro-geometricheskikh kodov na proektivnykh krivykh”, Integralnye i differentsialnye uravneniya, DGTU, Rostov-na-Donu, 2007, 1–1
[5] E. Kaltofen, “Razlozhenie polinomov na mnozhiteli”, Kompyuternaya algebra: simvolnye i algebraicheskie vychisleniya, Mir, M., 1986, 127–150 | MR
[6] T. W. Hungerford, Algebra, Grad. Texts in Math., 73, Springer-Verlag, New York–Berlin, 1980 | MR | Zbl
[7] L. Bernardin, “On square-free factorization of multivariate polynomials over a finite fields”, Theoret. Comput. Sci., 187:1–2 (1997), 105–116 | DOI | MR | Zbl
[8] D. Knut, Iskusstvo programmirovaniya dlya EVM. T. 2: Poluchislennye algoritmy, Mir, M., 1977 | MR | Zbl
[9] Dzh. E. Kollinz, M. Minott, F. Uinkler, “Arifmetika v osnovnykh algebraicheskikh oblastyakh”, Kompyuternaya algebra: simvolnye i algebraicheskie vychisleniya, Mir, M., 1986, 237–276 | MR
[10] M. Shaw, J. F. Traub, “On the number of multiplications for the evaluation of a polynomial and some of its derivatives”, J. Assoc. Comput. Mach., 21:1 (1974), 161–167 | DOI | MR | Zbl
[11] E. Kaltofen, V. Shoup, “Subquadratic-time factoring of polynomials over finite fields”, Math. Comp., 67:223 (1998), 1179–1197 | DOI | MR | Zbl