On Sets with Small Doubling Property
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 927-947

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $G$ is an arbitrary Abelian group and $A$ is any finite subset $G$. A set $A$ is called a set with small sumset if, for some number $K$, we have $|A+A|\le K|A|$. The structural properties of such sets were studied in the papers of Freiman, Bilu, Ruzsa, Chang, Green, and Tao. In the present paper, we prove that, under certain constraints on $K$, for any set with small sumset, there exists a set $\Lambda$, $\Lambda\ll_{\varepsilon}K\log|A|$, such that $|A\cap \Lambda|\gg |A|/K^{1/2+\varepsilon}$, where $\varepsilon>0$. In contrast to the results of the previous authors, our theorem is nontrivial even for a sufficiently large $K$. For example, for $K$ we can take $|A|^\eta$, where $\eta>0$. The method of proof used by us is quite elementary.
Keywords: Abelian group, sumset (Minkowski sum), set with small doubling property, arithmetic progression, connected set, dissociate set, Cauchy–Bunyakovskii inequality.
@article{MZM_2008_84_6_a9,
     author = {I. D. Shkredov},
     title = {On {Sets} with {Small} {Doubling} {Property}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {927--947},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a9/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On Sets with Small Doubling Property
JO  - Matematičeskie zametki
PY  - 2008
SP  - 927
EP  - 947
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a9/
LA  - ru
ID  - MZM_2008_84_6_a9
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On Sets with Small Doubling Property
%J Matematičeskie zametki
%D 2008
%P 927-947
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a9/
%G ru
%F MZM_2008_84_6_a9
I. D. Shkredov. On Sets with Small Doubling Property. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 927-947. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a9/