Best Local Approximation by Simplest Fractions
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 882-887.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present two theorems on best local approximation by simplest fractions, i.e., by logarithmic derivatives of algebraic polynomials with complex coefficients. In Theorem 1, we obtain an analog of Bernstein's well-known theorem on the description of $n$-times continuously differentiable functions on the closed interval $\Delta\subset\mathbb R$ in terms of local approximations in the uniform metric by algebraic polynomials. Theorem 2 describes the simplest Padé fraction as the limit of the sequence of simplest fractions of best uniform approximation and is an analog of Walsh's well-known result on the classical Padé fractions.
Keywords: best local approximation by simplest fractions, Walsh's theorem, Padé simplest fraction.
Mots-clés : algebraic polynomial
@article{MZM_2008_84_6_a6,
     author = {Ya. V. Novak},
     title = {Best {Local} {Approximation} by {Simplest} {Fractions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {882--887},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a6/}
}
TY  - JOUR
AU  - Ya. V. Novak
TI  - Best Local Approximation by Simplest Fractions
JO  - Matematičeskie zametki
PY  - 2008
SP  - 882
EP  - 887
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a6/
LA  - ru
ID  - MZM_2008_84_6_a6
ER  - 
%0 Journal Article
%A Ya. V. Novak
%T Best Local Approximation by Simplest Fractions
%J Matematičeskie zametki
%D 2008
%P 882-887
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a6/
%G ru
%F MZM_2008_84_6_a6
Ya. V. Novak. Best Local Approximation by Simplest Fractions. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 882-887. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a6/

[1] V. I. Danchenko, D. Ya. Danchenko, “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | MR | Zbl

[2] O. N. Kosukhin, “Ob approksimatsionnykh svoistvakh naiprosteishikh drobei”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 4, 54–59 | MR | Zbl

[3] P. A. Borodin, O. N. Kosukhin, “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2005, no. 1, 3–8 | MR | Zbl

[4] O. N. Kosukhin, O nekotorykh netraditsionnykh metodakh priblizheniya, svyazannykh s kompleksnymi polinomami, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2005

[5] S. N. Bernshtein, “K voprosu o lokalnom nailuchshem priblizhenii funktsii”, Dokl. AN SSSR, 26:9 (1940), 839–842 | MR | Zbl

[6] J. L. Walsh, “Padé approximants as limits of rational functions of best approximation”, J. Math. Mech., 13:2 (1964), 305–312 | MR | Zbl