Mots-clés : algebraic polynomial, Padé simplest fraction.
@article{MZM_2008_84_6_a6,
author = {Ya. V. Novak},
title = {Best {Local} {Approximation} by {Simplest} {Fractions}},
journal = {Matemati\v{c}eskie zametki},
pages = {882--887},
year = {2008},
volume = {84},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a6/}
}
Ya. V. Novak. Best Local Approximation by Simplest Fractions. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 882-887. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a6/
[1] V. I. Danchenko, D. Ya. Danchenko, “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | MR | Zbl
[2] O. N. Kosukhin, “Ob approksimatsionnykh svoistvakh naiprosteishikh drobei”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 4, 54–59 | MR | Zbl
[3] P. A. Borodin, O. N. Kosukhin, “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2005, no. 1, 3–8 | MR | Zbl
[4] O. N. Kosukhin, O nekotorykh netraditsionnykh metodakh priblizheniya, svyazannykh s kompleksnymi polinomami, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2005
[5] S. N. Bernshtein, “K voprosu o lokalnom nailuchshem priblizhenii funktsii”, Dokl. AN SSSR, 26:9 (1940), 839–842 | MR | Zbl
[6] J. L. Walsh, “Padé approximants as limits of rational functions of best approximation”, J. Math. Mech., 13:2 (1964), 305–312 | MR | Zbl