Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_6_a4, author = {V. P. Maslov}, title = {Transition to the {Condensate} {State} for {Classical} {Gases} and {Clusterization}}, journal = {Matemati\v{c}eskie zametki}, pages = {851--873}, publisher = {mathdoc}, volume = {84}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a4/} }
V. P. Maslov. Transition to the Condensate State for Classical Gases and Clusterization. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 851-873. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a4/
[1] A. N. Shiryaev, Veroyanost, Nauka, M., 1989 | MR | Zbl
[2] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovremennaya matematika, In-t kompyuter. issled., M.–Izhevsk, 2002 | MR | Zbl
[3] G. E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl., 2, Addison–Wesley Publ., London, 1976 | MR | Zbl
[4] A. M. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. analiz i ego pril., 30:2 (1996), 19–39 | MR | Zbl
[5] V. P. Maslov, “Quantum linguistic statistics”, Russ. J. Math. Phys., 13:3 (2006), 315–325 | DOI | MR | Zbl
[6] V. P. Maslov, T. V. Maslova, “O zakone Tsipfa i rangovykh raspredeleniyakh v lingvistike i semiotike”, Matem. zametki, 80:5 (2006), 718–732 | MR | Zbl
[7] V. P. Maslov, “The Zipf–Mandelbrot law: quantization and an application to the stock market”, Russ. J. Math. Phys., 12:4 (2005), 483–488 | MR | Zbl
[8] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh dvumya lineinymi neravenstvami. I”, Matem. zametki, 83:4 (2008), 559–580 | MR
[9] V. P. Maslov, “Nelineinoe srednee v ekonomike”, Matem. zametki, 78:3 (2005), 377–395 | MR | Zbl
[10] V. P. Maslov, “New look on the thermodynamics of gas and at the clasretizaton”, Russ. J. Math. Phys., 15:3 (2008), 494–511 | DOI
[11] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. III”, Matem. zametki, 83:6 (2008), 880–898
[12] V. P. Maslov, “Novaya kontseptsiya protsessa nukleatsii”, TMF, 156:1 (2008), 159–160
[13] V. P. Maslov, “New theory of nucleation”, Russ. J. Math. Phys., 15:3 (2008), 401–410 | DOI
[14] V. P. Maslov, P. P. Mosolov, “Asimptoticheskoe povedenie traektorii tochechnykh zaryadov, vzaimodeistvuyuschikh po zakonu Kulona”, Izv. AN SSSR. Ser. matem., 42:5 (1978), 1063–1100 | MR | Zbl
[15] N. N. Bogolyubov, Izbrannye trudy. V trekh tomakh, T. 2. K teorii sverkhtekuchesti, Naukova dumka, Kiev, 1970 | MR | Zbl
[16] V. P. Maslov, “On the superfluidity of classical liquid in nanotubes. I. Case of even number of neutrons”, Russ. J. Math. Phys., 14:3 (2007), 304–318 | DOI | MR
[17] V. P. Maslov, “On the superfluidity of classical liquid in nanotubes. II. Case of odd number of neutrons”, Russ. J. Math. Phys., 14:4 (2007), 453–464 | DOI | MR
[18] V. P. Maslov, “On the superfluidity of classical liquid in nanotubes. III”, Russ. J. Math. Phys., 15:1 (2008), 98–101 | MR
[19] G. Hummer, J. C. Rasaiah, J. P. Noworyta, “Water conduction through the hydrophobic channel of a carbon nanotube”, Nature, 414 (2001), 188–190 | DOI
[20] S. Joseph, N. R. Aluru, “Why are carbon nanotubes fast transporters of water?”, Nanoletters, 8:2 (2008), 452–458 | DOI
[21] A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, O. Bakajin, “Nanofluidics in carbon nanotubes”, Nanotoday, 2:6 (2007), 22–29 | DOI
[22] A. I. Skoulidas, D. M. Ackerman, J. K. Johnson, D. S. Sholl, “Rapid transport of gases in carbon nanotubes”, id. 185901, Phys. Rev. Lett., 89:18 (2002), 4 pp. | DOI
[23] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to semiclassical self-consistent fields. III”, Russ. J. Math. Phys., 3:2 (1995), 271–276 | MR | Zbl
[24] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965
[25] V. P. Maslov, “O fazovom perekhode dlya klassicheskikh fermionov”, Matem. zametki, 63:4 (1998), 635–637 | MR | Zbl
[26] V. P. Maslov, “O fazovom perekhode dlya klassicheskikh bozonov, fermionov i ob'emnykh klassicheskikh chastits”, Matem. zametki, 63:5 (1998), 792–795 | MR | Zbl
[27] V. P. Maslov, “Asimptotika pri $N\to\infty$ dlya $N$ klassicheskikh fermionov i bozonov”, Matem. zametki, 66:6 (1999), 849–866 | MR | Zbl
[28] V. P. Maslov, “Uchet vzaimodeistviya mezhdu chastitsami v novoi teorii nukleatsii, kvazichastitsy, kvantovanie vikhrei i dvukhchasticheaya funktsiya raspredeleniya”, Matem. zametki, 83:6 (2008), 864–879
[29] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika. T. 4. Kvantovaya elektrodinamika, Nauka, M., 1980 | MR
[30] A. I. Burshtein, Molekulyarnaya fizika, Nauka, Novosibirsk, 1986
[31] L. S. Pontryagin, A. A. Andronov, A. A. Vitt, “O statisticheskom rassmotrenii dinamicheskikh sistem”, ZhETF, 3:3 (1933), 165–180
[32] P. S. Landa, “Theory of fluctuational transitions and its applications”, J. Comm. Tech. Electron., 46:10 (2001), 1069–1107
[33] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh dvumya lineinymi sootnosheniyami”, Matem. zametki, 84:1 (2008), 69–98
[34] J. Bertrand, Calcul des probabilites, Gauthier-Villars, Paris, 1889 | Zbl
[35] R. V. Ambartsumyan, I. Mekke, D. Shtoiyan, Vvedenie v stokhasticheskuyu geometriyu, M., Nauka, 1989 | MR
[36] D. A. Klain, G.-C. Rota, Introduction to Geometric Probability, Lezioni Lincee, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl