Transition to the Condensate State for Classical Gases and Clusterization
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 851-873.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, using of the rigorous statement and rigorous proof the Maxwell distribution as an example, we establish estimates of the distribution depending on the parameter $N$, the number of particles. Further, we consider the problem of the occurrence of dimers in a classical gas as an analog of Bose condensation and establish estimates of the lower level of the analog of Bose condensation. We find the relationship of this level to “capture” theory in the scattering problem corresponding to an interaction of the form of the Lennard-Jones potential. This also solves the problem of the Gibbs paradox. We derive the equation of state for a nonideal gas as a result of pair interactions of particles in Lennard-Jones models and, for classical gases, discuss the $\lambda$-transition to the condensed state (the state in which $V_{\text{spec}}$ does not vary with increasing pressure; for heat capacity, this is the $\lambda$-point). We also present new quantum equations of the flow of a neutral gas consisting of particles with an odd number of neutrons in the capillaries in the Sutherland model.
Mots-clés : Bose condensation, dimer
Keywords: clusterization, scattering theory, Lennard-Jones potential, Maxwell distribution, neutral gas flow.
@article{MZM_2008_84_6_a4,
     author = {V. P. Maslov},
     title = {Transition to the {Condensate} {State} for {Classical} {Gases} and {Clusterization}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {851--873},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a4/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Transition to the Condensate State for Classical Gases and Clusterization
JO  - Matematičeskie zametki
PY  - 2008
SP  - 851
EP  - 873
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a4/
LA  - ru
ID  - MZM_2008_84_6_a4
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Transition to the Condensate State for Classical Gases and Clusterization
%J Matematičeskie zametki
%D 2008
%P 851-873
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a4/
%G ru
%F MZM_2008_84_6_a4
V. P. Maslov. Transition to the Condensate State for Classical Gases and Clusterization. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 851-873. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a4/

[1] A. N. Shiryaev, Veroyanost, Nauka, M., 1989 | MR | Zbl

[2] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Sovremennaya matematika, In-t kompyuter. issled., M.–Izhevsk, 2002 | MR | Zbl

[3] G. E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl., 2, Addison–Wesley Publ., London, 1976 | MR | Zbl

[4] A. M. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. analiz i ego pril., 30:2 (1996), 19–39 | MR | Zbl

[5] V. P. Maslov, “Quantum linguistic statistics”, Russ. J. Math. Phys., 13:3 (2006), 315–325 | DOI | MR | Zbl

[6] V. P. Maslov, T. V. Maslova, “O zakone Tsipfa i rangovykh raspredeleniyakh v lingvistike i semiotike”, Matem. zametki, 80:5 (2006), 718–732 | MR | Zbl

[7] V. P. Maslov, “The Zipf–Mandelbrot law: quantization and an application to the stock market”, Russ. J. Math. Phys., 12:4 (2005), 483–488 | MR | Zbl

[8] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh dvumya lineinymi neravenstvami. I”, Matem. zametki, 83:4 (2008), 559–580 | MR

[9] V. P. Maslov, “Nelineinoe srednee v ekonomike”, Matem. zametki, 78:3 (2005), 377–395 | MR | Zbl

[10] V. P. Maslov, “New look on the thermodynamics of gas and at the clasretizaton”, Russ. J. Math. Phys., 15:3 (2008), 494–511 | DOI

[11] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. III”, Matem. zametki, 83:6 (2008), 880–898

[12] V. P. Maslov, “Novaya kontseptsiya protsessa nukleatsii”, TMF, 156:1 (2008), 159–160

[13] V. P. Maslov, “New theory of nucleation”, Russ. J. Math. Phys., 15:3 (2008), 401–410 | DOI

[14] V. P. Maslov, P. P. Mosolov, “Asimptoticheskoe povedenie traektorii tochechnykh zaryadov, vzaimodeistvuyuschikh po zakonu Kulona”, Izv. AN SSSR. Ser. matem., 42:5 (1978), 1063–1100 | MR | Zbl

[15] N. N. Bogolyubov, Izbrannye trudy. V trekh tomakh, T. 2. K teorii sverkhtekuchesti, Naukova dumka, Kiev, 1970 | MR | Zbl

[16] V. P. Maslov, “On the superfluidity of classical liquid in nanotubes. I. Case of even number of neutrons”, Russ. J. Math. Phys., 14:3 (2007), 304–318 | DOI | MR

[17] V. P. Maslov, “On the superfluidity of classical liquid in nanotubes. II. Case of odd number of neutrons”, Russ. J. Math. Phys., 14:4 (2007), 453–464 | DOI | MR

[18] V. P. Maslov, “On the superfluidity of classical liquid in nanotubes. III”, Russ. J. Math. Phys., 15:1 (2008), 98–101 | MR

[19] G. Hummer, J. C. Rasaiah, J. P. Noworyta, “Water conduction through the hydrophobic channel of a carbon nanotube”, Nature, 414 (2001), 188–190 | DOI

[20] S. Joseph, N. R. Aluru, “Why are carbon nanotubes fast transporters of water?”, Nanoletters, 8:2 (2008), 452–458 | DOI

[21] A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, O. Bakajin, “Nanofluidics in carbon nanotubes”, Nanotoday, 2:6 (2007), 22–29 | DOI

[22] A. I. Skoulidas, D. M. Ackerman, J. K. Johnson, D. S. Sholl, “Rapid transport of gases in carbon nanotubes”, id. 185901, Phys. Rev. Lett., 89:18 (2002), 4 pp. | DOI

[23] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to semiclassical self-consistent fields. III”, Russ. J. Math. Phys., 3:2 (1995), 271–276 | MR | Zbl

[24] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965

[25] V. P. Maslov, “O fazovom perekhode dlya klassicheskikh fermionov”, Matem. zametki, 63:4 (1998), 635–637 | MR | Zbl

[26] V. P. Maslov, “O fazovom perekhode dlya klassicheskikh bozonov, fermionov i ob'emnykh klassicheskikh chastits”, Matem. zametki, 63:5 (1998), 792–795 | MR | Zbl

[27] V. P. Maslov, “Asimptotika pri $N\to\infty$ dlya $N$ klassicheskikh fermionov i bozonov”, Matem. zametki, 66:6 (1999), 849–866 | MR | Zbl

[28] V. P. Maslov, “Uchet vzaimodeistviya mezhdu chastitsami v novoi teorii nukleatsii, kvazichastitsy, kvantovanie vikhrei i dvukhchasticheaya funktsiya raspredeleniya”, Matem. zametki, 83:6 (2008), 864–879

[29] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika. T. 4. Kvantovaya elektrodinamika, Nauka, M., 1980 | MR

[30] A. I. Burshtein, Molekulyarnaya fizika, Nauka, Novosibirsk, 1986

[31] L. S. Pontryagin, A. A. Andronov, A. A. Vitt, “O statisticheskom rassmotrenii dinamicheskikh sistem”, ZhETF, 3:3 (1933), 165–180

[32] P. S. Landa, “Theory of fluctuational transitions and its applications”, J. Comm. Tech. Electron., 46:10 (2001), 1069–1107

[33] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh dvumya lineinymi sootnosheniyami”, Matem. zametki, 84:1 (2008), 69–98

[34] J. Bertrand, Calcul des probabilites, Gauthier-Villars, Paris, 1889 | Zbl

[35] R. V. Ambartsumyan, I. Mekke, D. Shtoiyan, Vvedenie v stokhasticheskuyu geometriyu, M., Nauka, 1989 | MR

[36] D. A. Klain, G.-C. Rota, Introduction to Geometric Probability, Lezioni Lincee, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl