A Class of Uniform Functions and Its Relationship with the Class of Measurable Functions
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 809-824.

Voir la notice de l'article provenant de la source Math-Net.Ru

Borel, Lebesgue, and Hausdorff described all uniformly closed families of real-valued functions on a set $T$ whose algebraic properties are just like those of the set of all continuous functions with respect to some open topology on $T$. These families turn out to be exactly the families of all functions measurable with respect to some $\sigma$-additive and multiplicative ensembles on $T$. The problem of describing all uniformly closed families of bounded functions whose algebraic properties are just like those of the set of all continuous bounded functions remained unsolved. In the paper, a solution of this problem is given with the help of a new class of functions that are uniform with respect to some multiplicative families of finite coverings on $T$. It is proved that the class of uniform functions differs from the class of measurable functions.
Keywords: uniform function, measurable function, measurable function w.r.t an ensemble, normal family of functions, boundedly normal family of functions.
Mots-clés : $\sigma$-additive ensemble
@article{MZM_2008_84_6_a1,
     author = {V. K. Zakharov and T. V. Rodionov},
     title = {A {Class} of {Uniform} {Functions} and {Its} {Relationship} with the {Class} of {Measurable} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {809--824},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a1/}
}
TY  - JOUR
AU  - V. K. Zakharov
AU  - T. V. Rodionov
TI  - A Class of Uniform Functions and Its Relationship with the Class of Measurable Functions
JO  - Matematičeskie zametki
PY  - 2008
SP  - 809
EP  - 824
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a1/
LA  - ru
ID  - MZM_2008_84_6_a1
ER  - 
%0 Journal Article
%A V. K. Zakharov
%A T. V. Rodionov
%T A Class of Uniform Functions and Its Relationship with the Class of Measurable Functions
%J Matematičeskie zametki
%D 2008
%P 809-824
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a1/
%G ru
%F MZM_2008_84_6_a1
V. K. Zakharov; T. V. Rodionov. A Class of Uniform Functions and Its Relationship with the Class of Measurable Functions. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 809-824. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a1/

[1] F. Hausdorff, Grundzüge der Mengenlehre, Viet, Leipzig, 1914 | MR | Zbl

[2] F. Khausdorf, Teoriya mnozhestv, URSS, M., 2004 | MR | Zbl

[3] V. K. Zakharov, “Teorema Khausdorfa ob izmerimykh funktsiyakh i novyi klass ravnomernykh funktsii”, Tikhonov i sovremennaya matematika, Tezisy dokl. mezhdunar. konf. (19–25 iyunya 2006 g.), Izd-vo MGU, M., 2006, 128–129

[4] T. Jech, Set Theory, Springer Monogr. Math., Springer-Verlag, Berlin, 2003 | MR | Zbl

[5] V. K. Zakharov, “Alexandrovian cover and Sierpińskian extension”, Studia Sci. Math. Hungar., 24:2–3 (1989), 93–117 | MR | Zbl

[6] V. K. Zakharov, “Novye klassy funktsii, svyazannye s obschimi semeistvami mnozhestv”, Dokl. RAN, 407:2 (2006), 167–171 | MR

[7] V. K. Zakharov, “Klassifikatsiya borelevskikh mnozhestv i funktsii dlya proizvolnogo prostranstva”, Dokl. RAN, 385:5 (2002), 596–598 | MR | Zbl

[8] V. K. Zakharov, “Problema kharakterizatsii radonovskikh integralov”, Dokl. RAN, 385:6 (2002), 735–737 | MR | Zbl

[9] V. K. Zakharov, “Problema Rissa–Radona kharakterizatsii integralov i slabaya kompaktnost radonovskikh mer”, Issledovaniya po teorii funktsii i differentsialnym uravneniyam, Tr. MIAN, 248, Nauka, M., 2005, 106–116 | MR | Zbl

[10] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1 (1956), 177–238 | Zbl

[11] V. K. Zakharov, A. A. Seredinskii, “Novaya kharakterizatsiya integrala Rimana i funktsii, integriruemykh po Rimanu”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2006, no. 2, 16–23 | MR | Zbl