Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_6_a1, author = {V. K. Zakharov and T. V. Rodionov}, title = {A {Class} of {Uniform} {Functions} and {Its} {Relationship} with the {Class} of {Measurable} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {809--824}, publisher = {mathdoc}, volume = {84}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a1/} }
TY - JOUR AU - V. K. Zakharov AU - T. V. Rodionov TI - A Class of Uniform Functions and Its Relationship with the Class of Measurable Functions JO - Matematičeskie zametki PY - 2008 SP - 809 EP - 824 VL - 84 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a1/ LA - ru ID - MZM_2008_84_6_a1 ER -
V. K. Zakharov; T. V. Rodionov. A Class of Uniform Functions and Its Relationship with the Class of Measurable Functions. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 809-824. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a1/
[1] F. Hausdorff, Grundzüge der Mengenlehre, Viet, Leipzig, 1914 | MR | Zbl
[2] F. Khausdorf, Teoriya mnozhestv, URSS, M., 2004 | MR | Zbl
[3] V. K. Zakharov, “Teorema Khausdorfa ob izmerimykh funktsiyakh i novyi klass ravnomernykh funktsii”, Tikhonov i sovremennaya matematika, Tezisy dokl. mezhdunar. konf. (19–25 iyunya 2006 g.), Izd-vo MGU, M., 2006, 128–129
[4] T. Jech, Set Theory, Springer Monogr. Math., Springer-Verlag, Berlin, 2003 | MR | Zbl
[5] V. K. Zakharov, “Alexandrovian cover and Sierpińskian extension”, Studia Sci. Math. Hungar., 24:2–3 (1989), 93–117 | MR | Zbl
[6] V. K. Zakharov, “Novye klassy funktsii, svyazannye s obschimi semeistvami mnozhestv”, Dokl. RAN, 407:2 (2006), 167–171 | MR
[7] V. K. Zakharov, “Klassifikatsiya borelevskikh mnozhestv i funktsii dlya proizvolnogo prostranstva”, Dokl. RAN, 385:5 (2002), 596–598 | MR | Zbl
[8] V. K. Zakharov, “Problema kharakterizatsii radonovskikh integralov”, Dokl. RAN, 385:6 (2002), 735–737 | MR | Zbl
[9] V. K. Zakharov, “Problema Rissa–Radona kharakterizatsii integralov i slabaya kompaktnost radonovskikh mer”, Issledovaniya po teorii funktsii i differentsialnym uravneniyam, Tr. MIAN, 248, Nauka, M., 2005, 106–116 | MR | Zbl
[10] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1 (1956), 177–238 | Zbl
[11] V. K. Zakharov, A. A. Seredinskii, “Novaya kharakterizatsiya integrala Rimana i funktsii, integriruemykh po Rimanu”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2006, no. 2, 16–23 | MR | Zbl