Majorization Principles for Meromorphic Functions
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 803-808 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Supplements to the Lindelöf principle on the behavior of Green's function and the Nevanlinna principle on the behavior of the harmonic measure under meromorphic maps are proposed; these supplements go back to Mityuk's work on the change of the inner radius of a domain under the action of regular functions.
Keywords: Lindelöf principle, Nevanlinna majorization principle, meromorphic function, harmonic measure, Green's function, subharmonic function.
@article{MZM_2008_84_6_a0,
     author = {V. N. Dubinin},
     title = {Majorization {Principles} for {Meromorphic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--808},
     year = {2008},
     volume = {84},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a0/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Majorization Principles for Meromorphic Functions
JO  - Matematičeskie zametki
PY  - 2008
SP  - 803
EP  - 808
VL  - 84
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a0/
LA  - ru
ID  - MZM_2008_84_6_a0
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Majorization Principles for Meromorphic Functions
%J Matematičeskie zametki
%D 2008
%P 803-808
%V 84
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a0/
%G ru
%F MZM_2008_84_6_a0
V. N. Dubinin. Majorization Principles for Meromorphic Functions. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 803-808. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a0/

[1] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, T. 2, IL, M., 1962 | MR | Zbl

[2] G. M. Goluzin, Gemetricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[3] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Preprint 454, Reports in Mathematics, Univ. of Helsinki, Helsinki, 2007

[4] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei”, Dokl. AN SSSR, 157:2 (1964), 268–270 | MR | Zbl

[5] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei i nekotorye ego primeneniya”, Ukr. matem. zhurn., 17:4 (1965), 46–54 | MR | Zbl

[6] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980

[7] I. P. Mityuk, Primenenie simmetrizatsionnykh metodov v geometricheskoi teorii funktsii, Kubanskii gos. un-t, Krasnodar, 1985

[8] I. P. Mityuk, “Otsenki vnutrennego radiusa (emkosti) nekotopoi oblasti (kondensatora)”, Izv. Severo-Kavkaz. nauchn. tsentra vyssh. shk. estestv. nauk., 1983, no. 3, 36–38 | MR | Zbl

[9] V. N. Dubinin, S. I. Kalmykov, “Printsip mazhoratsii dlya meromorfnykh funktsii”, Matem. sb., 198:12 (2007), 37–46 | MR | Zbl

[10] A. L. Lukashov, “Dopolneniya k printsipu garmonicheskoi mery R. Nevanlinny”, Matem. zametki, 84:4 (2008), 632–633

[11] M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984 | MR | Zbl