Majorization Principles for Meromorphic Functions
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 803-808.

Voir la notice de l'article provenant de la source Math-Net.Ru

Supplements to the Lindelöf principle on the behavior of Green's function and the Nevanlinna principle on the behavior of the harmonic measure under meromorphic maps are proposed; these supplements go back to Mityuk's work on the change of the inner radius of a domain under the action of regular functions.
Keywords: Lindelöf principle, Nevanlinna majorization principle, meromorphic function, harmonic measure, Green's function, subharmonic function.
@article{MZM_2008_84_6_a0,
     author = {V. N. Dubinin},
     title = {Majorization {Principles} for {Meromorphic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--808},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a0/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Majorization Principles for Meromorphic Functions
JO  - Matematičeskie zametki
PY  - 2008
SP  - 803
EP  - 808
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a0/
LA  - ru
ID  - MZM_2008_84_6_a0
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Majorization Principles for Meromorphic Functions
%J Matematičeskie zametki
%D 2008
%P 803-808
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a0/
%G ru
%F MZM_2008_84_6_a0
V. N. Dubinin. Majorization Principles for Meromorphic Functions. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 803-808. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a0/

[1] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, T. 2, IL, M., 1962 | MR | Zbl

[2] G. M. Goluzin, Gemetricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[3] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Preprint 454, Reports in Mathematics, Univ. of Helsinki, Helsinki, 2007

[4] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei”, Dokl. AN SSSR, 157:2 (1964), 268–270 | MR | Zbl

[5] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei i nekotorye ego primeneniya”, Ukr. matem. zhurn., 17:4 (1965), 46–54 | MR | Zbl

[6] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980

[7] I. P. Mityuk, Primenenie simmetrizatsionnykh metodov v geometricheskoi teorii funktsii, Kubanskii gos. un-t, Krasnodar, 1985

[8] I. P. Mityuk, “Otsenki vnutrennego radiusa (emkosti) nekotopoi oblasti (kondensatora)”, Izv. Severo-Kavkaz. nauchn. tsentra vyssh. shk. estestv. nauk., 1983, no. 3, 36–38 | MR | Zbl

[9] V. N. Dubinin, S. I. Kalmykov, “Printsip mazhoratsii dlya meromorfnykh funktsii”, Matem. sb., 198:12 (2007), 37–46 | MR | Zbl

[10] A. L. Lukashov, “Dopolneniya k printsipu garmonicheskoi mery R. Nevanlinny”, Matem. zametki, 84:4 (2008), 632–633

[11] M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984 | MR | Zbl