Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_6_a0, author = {V. N. Dubinin}, title = {Majorization {Principles} for {Meromorphic} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {803--808}, publisher = {mathdoc}, volume = {84}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a0/} }
V. N. Dubinin. Majorization Principles for Meromorphic Functions. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 803-808. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a0/
[1] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, T. 2, IL, M., 1962 | MR | Zbl
[2] G. M. Goluzin, Gemetricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl
[3] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Preprint 454, Reports in Mathematics, Univ. of Helsinki, Helsinki, 2007
[4] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei”, Dokl. AN SSSR, 157:2 (1964), 268–270 | MR | Zbl
[5] I. P. Mityuk, “Printsip simmetrizatsii dlya mnogosvyaznykh oblastei i nekotorye ego primeneniya”, Ukr. matem. zhurn., 17:4 (1965), 46–54 | MR | Zbl
[6] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980
[7] I. P. Mityuk, Primenenie simmetrizatsionnykh metodov v geometricheskoi teorii funktsii, Kubanskii gos. un-t, Krasnodar, 1985
[8] I. P. Mityuk, “Otsenki vnutrennego radiusa (emkosti) nekotopoi oblasti (kondensatora)”, Izv. Severo-Kavkaz. nauchn. tsentra vyssh. shk. estestv. nauk., 1983, no. 3, 36–38 | MR | Zbl
[9] V. N. Dubinin, S. I. Kalmykov, “Printsip mazhoratsii dlya meromorfnykh funktsii”, Matem. sb., 198:12 (2007), 37–46 | MR | Zbl
[10] A. L. Lukashov, “Dopolneniya k printsipu garmonicheskoi mery R. Nevanlinny”, Matem. zametki, 84:4 (2008), 632–633
[11] M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984 | MR | Zbl