Comonotone Approximation of Periodic Functions
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 713-723
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that a continuous $2\pi$-periodic function $f$ on the real axis $\mathbb R$ changes its monotonicity at different ordered fixed points $y_i\in[-\pi,\pi)$, $i=1,\dots,2s$, $s\in\mathbb N$. In other words, there is a set $Y:=\{y_i\}_{i\in\mathbb Z}$ of points $y_i=y_{i+2s}+2\pi$ on $\mathbb R$ such that $f$ is nondecreasing on $[y_i,y_{i-1}]$ if $i$ is odd and not increasing if $i$ is even. For each $n\ge N(Y)$, we construct a trigonometric polynomial $P_n$ of order $\le n$ changing its monotonicity at the same points $y_i\in Y$ as $f$ and such that
$$
\|f-P_n\|\le c(s)\,\omega_2\biggl(f,\frac\pi n\biggr),
$$
where $N(Y)$ is a constant depending only on $Y$, $c(s)$ is a constant depending only on $s$, $\omega_2(f,\,\cdot\,)$ is the modulus of continuity of second order of the function $f$, and ${\|\cdot\|}$ is the $\max$-norm.
Keywords:
periodic function, comonotone approximation, trigonometric polynomial, Jackson-type kernel, Whitney's inequality, modulus of continuity.
@article{MZM_2008_84_5_a6,
author = {G. A. Dzyubenko and M. G. Pleshakov},
title = {Comonotone {Approximation} of {Periodic} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {713--723},
publisher = {mathdoc},
volume = {84},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a6/}
}
G. A. Dzyubenko; M. G. Pleshakov. Comonotone Approximation of Periodic Functions. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 713-723. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a6/