Nontrivial Solutions of a Higher-Order Rational Difference Equation
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 772-780

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for every $k\in\mathbb N$, the following generalization of the Putnam difference equation $$ x_{n+1}=\frac{x_n+x_{n-1}+\dots+x_{n-(k-1)}+x_{n-k}x_{n-(k+1)}} {x_nx_{n-1}+x_{n-2}+\dots+x_{n-(k+1)}}\,,\qquad n\in\mathbb N_0, $$ has a positive solution with the following asymptotics $$ x_n=1+(k+1)e^{-\lambda^n}+(k+1)e^{-c\lambda^n}+o(e^{-c\lambda^n}) $$ for some $c>1$ depending on $k$, and where $\lambda$ is the root of the polynomial $P(\lambda)=\lambda^{k+2}-\lambda-1$ belonging to the interval $(1,2)$. Using this result, we prove that the equation has a positive solution which is not eventually equal to $1$. Also, for the case $k=1$, we find all positive eventually equal to unity solutions to the equation.
Keywords: difference equation, nonlinear solution, asymptotic, Putnam difference equation.
@article{MZM_2008_84_5_a12,
     author = {S. Stevi\'c},
     title = {Nontrivial {Solutions} of a {Higher-Order} {Rational} {Difference} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {772--780},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a12/}
}
TY  - JOUR
AU  - S. Stević
TI  - Nontrivial Solutions of a Higher-Order Rational Difference Equation
JO  - Matematičeskie zametki
PY  - 2008
SP  - 772
EP  - 780
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a12/
LA  - ru
ID  - MZM_2008_84_5_a12
ER  - 
%0 Journal Article
%A S. Stević
%T Nontrivial Solutions of a Higher-Order Rational Difference Equation
%J Matematičeskie zametki
%D 2008
%P 772-780
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a12/
%G ru
%F MZM_2008_84_5_a12
S. Stević. Nontrivial Solutions of a Higher-Order Rational Difference Equation. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 772-780. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a12/