Nontrivial Solutions of a Higher-Order Rational Difference Equation
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 772-780.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for every $k\in\mathbb N$, the following generalization of the Putnam difference equation $$ x_{n+1}=\frac{x_n+x_{n-1}+\dots+x_{n-(k-1)}+x_{n-k}x_{n-(k+1)}} {x_nx_{n-1}+x_{n-2}+\dots+x_{n-(k+1)}}\,,\qquad n\in\mathbb N_0, $$ has a positive solution with the following asymptotics $$ x_n=1+(k+1)e^{-\lambda^n}+(k+1)e^{-c\lambda^n}+o(e^{-c\lambda^n}) $$ for some $c>1$ depending on $k$, and where $\lambda$ is the root of the polynomial $P(\lambda)=\lambda^{k+2}-\lambda-1$ belonging to the interval $(1,2)$. Using this result, we prove that the equation has a positive solution which is not eventually equal to $1$. Also, for the case $k=1$, we find all positive eventually equal to unity solutions to the equation.
Keywords: difference equation, nonlinear solution, asymptotic, Putnam difference equation.
@article{MZM_2008_84_5_a12,
     author = {S. Stevi\'c},
     title = {Nontrivial {Solutions} of a {Higher-Order} {Rational} {Difference} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {772--780},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a12/}
}
TY  - JOUR
AU  - S. Stević
TI  - Nontrivial Solutions of a Higher-Order Rational Difference Equation
JO  - Matematičeskie zametki
PY  - 2008
SP  - 772
EP  - 780
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a12/
LA  - ru
ID  - MZM_2008_84_5_a12
ER  - 
%0 Journal Article
%A S. Stević
%T Nontrivial Solutions of a Higher-Order Rational Difference Equation
%J Matematičeskie zametki
%D 2008
%P 772-780
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a12/
%G ru
%F MZM_2008_84_5_a12
S. Stević. Nontrivial Solutions of a Higher-Order Rational Difference Equation. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 772-780. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a12/

[1] N. Kruse, T. Nesemann, “Global asymptotic stability in some discrete dynamical systems”, J. Math. Anal. Appl., 235:1 (1999), 151–158 | DOI | MR | Zbl

[2] X. Yang, “Global asymptotic stability in a class of generalized Putnam equations”, J. Math. Anal. Appl., 322:2 (2006), 693–698 | DOI | MR | Zbl

[3] L. E. Bush, “The William Lowell Putnam Mathematical Competition”, Amer. Math. Monthly, 72:7 (1965), 732–739 | DOI | MR

[4] G. Ladas, “Open problems and conjectures”, J. Difference Equ. Appl., 4:5 (1998), 497–499 | DOI | MR | Zbl

[5] S. Stević, “Existence of nontrivial solutions of a rational difference equation”, Appl. Math. Lett., 20:1 (2007), 28–31 | DOI | MR | Zbl

[6] L. Berg, “Inclusion theorems for non-linear difference equations with applications”, J. Difference Equ. Appl., 10:4 (2004), 399–408 | DOI | MR | Zbl

[7] L. Berg, Asymptotische Darstellungen und Entwicklungen, Hochschulbücher für Mathematik, 66, VEB Deutscher Verlag der Wissenschaften, Berlin, 1968 | MR | Zbl

[8] L. Berg, “On the asymptotics of nonlinear difference equations”, Z. Anal. Anwendungen, 21:4 (2002), 1061–1074 | MR | Zbl

[9] L. Berg, “Corrections to "Inclusion theorems for non-linear difference equations with applications”, J. Difference Equ. Appl., 11:2 (2005), 181–182 | DOI | MR | Zbl

[10] L. Berg, L. v. Wolfersdorf, “On a class of generalized autoconvolution equations of the third kind”, Z. Anal. Anwendungen, 24:2 (2005), 217–250 | MR | Zbl

[11] S. Stević, “Asymptotic behaviour of a sequence defined by iteration”, Mat. Vesnik, 48:3–4 (1996), 99–105 | MR | Zbl

[12] S. Stević, “Behaviour of the positive solutions of the generalized Beddington–Holt equation”, Panamer. Math. J., 10:4 (2000), 77–85 | MR | Zbl

[13] S. Stević, “Asymptotic behaviour of a sequence defined by iteration with applications”, Colloq. Math., 93:2 (2002), 267–276 | DOI | MR | Zbl

[14] S. Stević, “Asymptotic behaviour of a nonlinear difference equation”, Indian J. Pure Appl. Math., 34:12 (2003), 1681–1687 | MR | Zbl

[15] S. Stević, “Global stability and asymptotics of some classes of rational difference equations”, J. Math. Anal. Appl., 316:1 (2006), 60–68 | DOI | MR | Zbl

[16] S. Stević, “On positive solutions of a $(k+1)$th order difference equation”, Appl. Math. Lett., 19:5 (2006), 427–431 | DOI | MR | Zbl

[17] S. Stević, “Asymptotic behavior of a class of nonlinear difference equations”, Art. ID 47156, Discrete Dyn. Nat. Soc., 2006 | MR | Zbl

[18] S. Stević, “On monotone solutions of some clases of difference equations”, Art. ID 53890, Discrete Dyn. Nat. Soc., 2006 | MR | Zbl

[19] S. Stević, “On the recursive sequence $x_{n+1}=x_{n-1}/g(x_n)$”, Taiwanese J. Math., 6:3 (2002), 405–414 | MR | Zbl

[20] T. Sun, H. Xi, “On the global behaviour of the nonlinear difference equation $x_{n+1}=f(p_n,x_{n-m},x_{n-t(k+1)+1)})$”, Art. ID 90625, Discrete Dyn. Nat. Soc., 2006 | MR | Zbl

[21] S. E. Takahasi, Y. Miura, T. Miura, “On convergence of a recursive sequence $x_{n+1}=f(x_n,x_{n-1})$”, Taiwanese J. Math., 10:3 (2006), 631–638 | MR | Zbl

[22] Q. Wang, F. P. Zeng, G. R. Zhang, X. H. Liu, “Dynamics of the difference equation $x_{n+1}=\frac{\alpha+B_1x_{n-1}+B_3x_{n-3}+\dots+B_{2k+1}x_{n-2k-1}} {A+B_0x_n+B_2x_{n-2}+\dots+B_{2k}x_{n-2k}}$”, J. Difference Equ. Appl., 12:5 (2006), 399–417 | DOI | MR | Zbl

[23] X. Yang, F. Sun, Y. Y. Tang, “A new part-metric-related inequality chain and an application”, Art. ID 193872, Discrete Dyn. Nat. Soc., 2008 | MR

[24] L. Berg, E-mail Communication, October 09, 2006