Bott's Periodicity Theorem and Differentials of the Adams Spectral Sequence of Homotopy Groups of Spheres
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 763-771.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bott's periodicity theorem is applied to calculate higher-order differentials of the Adams spectral sequence of homotopy groups $\pi_*(SO)$. The resulting formulas are used to find higher-order differentials of the Adams spectral sequence of homotopy groups of spheres.
Keywords: Bott's periodicity theorem, differentials of the Adams spectral sequence, homotopy groups of spheres, exterior algebra, loop space.
Mots-clés : stable homotopy group
@article{MZM_2008_84_5_a11,
     author = {V. A. Smirnov},
     title = {Bott's {Periodicity} {Theorem} and {Differentials} of the {Adams} {Spectral} {Sequence} of {Homotopy} {Groups} of {Spheres}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {763--771},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a11/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - Bott's Periodicity Theorem and Differentials of the Adams Spectral Sequence of Homotopy Groups of Spheres
JO  - Matematičeskie zametki
PY  - 2008
SP  - 763
EP  - 771
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a11/
LA  - ru
ID  - MZM_2008_84_5_a11
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T Bott's Periodicity Theorem and Differentials of the Adams Spectral Sequence of Homotopy Groups of Spheres
%J Matematičeskie zametki
%D 2008
%P 763-771
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a11/
%G ru
%F MZM_2008_84_5_a11
V. A. Smirnov. Bott's Periodicity Theorem and Differentials of the Adams Spectral Sequence of Homotopy Groups of Spheres. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 763-771. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a11/

[1] J. F. Adams, “On the structure and applications of the Steenrod algebra”, Comment. Math. Helv., 32:1 (1958), 180–214 | DOI | MR | Zbl

[2] W. S. Massey, F. P. Peterson, The mod 2 Cohomology Structure of Certain Fibre Spaces, Mem. Amer. Math. Soc., 74, Amer. Math. Soc., Providence, RI, 1967 | MR | Zbl

[3] A. K. Bousfield, D. M. Kan, “The homotopy spectral sequence of a space with coefficients in a ring”, Topology, 11:1 (1972), 79–106 | DOI | MR

[4] Dzh. Uaitkhed, Noveishie dostizheniya v teorii gomotopii, Mir, M., 1974 | MR | Zbl

[5] R. Mosher, M. Tangora, Kogomologicheskie operatsii i ikh prilozheniya v teorii gomotopii, Mir, M., 1970 | MR | Zbl

[6] V. A. Smirnov, Simplicial and Operad Methods in Algebraic Topology, Transl. Math. Monogr., 198, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[7] V. A. Smirnov, “$A_\infty$-struktura i differentsialy spektralnoi posledovatelnosti Adamsa”, Izv. RAN. Ser. matem., 66:5 (2002), 193–224 | MR | Zbl

[8] V. A. Smirnov, “Vtorichnye operatsii Stinroda na kogomologiyakh beskonechnomernykh proektivnykh prostranstv”, Matem. zametki, 79:3 (2006), 476–480 | MR | Zbl

[9] R. Bott, “The stable homotopy for the classical groups”, Ann. of Math. (2), 70:2 (1959), 313–337 | DOI | MR | Zbl

[10] R. M. Svittser, Algebraicheskaya topologiya – gomotopii i gomologii, Nauka, M., 1985 | MR | Zbl

[11] V. K. A. M. Gugenheim, L. A. Lambe, J. D. Stasheff, “Perturbation theory in differential homological algebra. II”, Illinois J. Math., 35:3 (1991), 357–373 | MR | Zbl

[12] E. Dyer, R. Lashof, “Homology of iterated loop spaces”, Amer. J. Math., 84:1 (1962), 35–88 | DOI | MR | Zbl