Invariant Weighted Algebras $\mathscr L_p^w(G)$
Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 567-576

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to weighted spaces $\mathscr L_p^w(G)$ on a locally compact group $G$. If $w$ is a positive measurable function on $G$, then the space $\mathscr L_p^w(G)$, $p\ge1$, is defined by the relation $\mathscr L_p^w(G)=\{f:fw\in\mathscr L_p(G)\}$. The weights $w$ for which these spaces are algebras with respect to the ordinary convolution are treated. It is shown that, for $p>1$, every sigma-compact group admits a weight defining such an algebra. The following criterion is proved (which was known earlier for special cases only): a space $\mathscr L_1^w(G)$ is an algebra if and only if the function $w$ is semimultiplicative. It is proved that the invariance of the space $\mathscr L_p^w(G)$ with respect to translations is a sufficient condition for the existence of an approximate identity in the algebra $\mathscr L_p^w(G)$. It is also shown that, for a nondiscrete group $G$ and for $p>1$, no approximate identity of an invariant weighted algebra can be bounded.
Keywords: locally compact group, weighted space, weighted algebra, approximate identity, bounded approximate identity, $\sigma$-compact group, measurable function.
@article{MZM_2008_84_4_a7,
     author = {Yu. N. Kuznetsova},
     title = {Invariant {Weighted} {Algebras} $\mathscr L_p^w(G)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {567--576},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a7/}
}
TY  - JOUR
AU  - Yu. N. Kuznetsova
TI  - Invariant Weighted Algebras $\mathscr L_p^w(G)$
JO  - Matematičeskie zametki
PY  - 2008
SP  - 567
EP  - 576
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a7/
LA  - ru
ID  - MZM_2008_84_4_a7
ER  - 
%0 Journal Article
%A Yu. N. Kuznetsova
%T Invariant Weighted Algebras $\mathscr L_p^w(G)$
%J Matematičeskie zametki
%D 2008
%P 567-576
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a7/
%G ru
%F MZM_2008_84_4_a7
Yu. N. Kuznetsova. Invariant Weighted Algebras $\mathscr L_p^w(G)$. Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 567-576. http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a7/