Invariant Weighted Algebras $\mathscr L_p^w(G)$
Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 567-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to weighted spaces $\mathscr L_p^w(G)$ on a locally compact group $G$. If $w$ is a positive measurable function on $G$, then the space $\mathscr L_p^w(G)$, $p\ge1$, is defined by the relation $\mathscr L_p^w(G)=\{f:fw\in\mathscr L_p(G)\}$. The weights $w$ for which these spaces are algebras with respect to the ordinary convolution are treated. It is shown that, for $p>1$, every sigma-compact group admits a weight defining such an algebra. The following criterion is proved (which was known earlier for special cases only): a space $\mathscr L_1^w(G)$ is an algebra if and only if the function $w$ is semimultiplicative. It is proved that the invariance of the space $\mathscr L_p^w(G)$ with respect to translations is a sufficient condition for the existence of an approximate identity in the algebra $\mathscr L_p^w(G)$. It is also shown that, for a nondiscrete group $G$ and for $p>1$, no approximate identity of an invariant weighted algebra can be bounded.
Keywords: locally compact group, weighted space, weighted algebra, approximate identity, bounded approximate identity, $\sigma$-compact group, measurable function.
@article{MZM_2008_84_4_a7,
     author = {Yu. N. Kuznetsova},
     title = {Invariant {Weighted} {Algebras} $\mathscr L_p^w(G)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {567--576},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a7/}
}
TY  - JOUR
AU  - Yu. N. Kuznetsova
TI  - Invariant Weighted Algebras $\mathscr L_p^w(G)$
JO  - Matematičeskie zametki
PY  - 2008
SP  - 567
EP  - 576
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a7/
LA  - ru
ID  - MZM_2008_84_4_a7
ER  - 
%0 Journal Article
%A Yu. N. Kuznetsova
%T Invariant Weighted Algebras $\mathscr L_p^w(G)$
%J Matematičeskie zametki
%D 2008
%P 567-576
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a7/
%G ru
%F MZM_2008_84_4_a7
Yu. N. Kuznetsova. Invariant Weighted Algebras $\mathscr L_p^w(G)$. Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 567-576. http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a7/

[1] I. M. Gelfand, D. A. Raikov, G. E. Shilov, Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960 | MR | Zbl

[2] J. Wermer, “On a class of normed rings”, Ark. Mat., 2:6 (1954), 537–551 | DOI | MR | Zbl

[3] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz, t. I, Nauka, M., 1975 | MR | Zbl

[4] Yu. N. Kuznetsova, “Vesovye $L_p$-algebry na gruppakh”, Funkts. analiz i ego pril., 40:3 (2006), 82–85 | MR | Zbl

[5] R. E. Edwards, “The stability of weighted Lebesgue spaces”, Trans. Amer. Math. Soc., 93:3 (1959), 369–394 | DOI | MR | Zbl

[6] H. G. Feichtinger, “Gewichtsfunktionen auf lokalkompakten Gruppen”, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 188:8–10 (1979), 451–471 | MR | Zbl

[7] S. Grabiner, “Weighted convolution algebras as analogues of Banach algebras of power series”, Radical Banach Algebras and Automatic Continuity, Long Beach, Calif., 1981, Lecture Notes in Math., 975, Springer, Berlin–New York, 1983, 295–300 | DOI | MR | Zbl

[8] A. Bruckner, “Differentiation of integrals”, Amer. Math. Monthly, 78:9, Part II (1971), 51 p. | MR | Zbl

[9] A. Ionescu Tulcea, C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, 48, Springer-Verlag, Berlin, 1969 | MR | Zbl

[10] G. I. Gaudry, “Multipliers of weighted Lebesgue and measure spaces”, Proc. London Math. Soc. (3), 19 (1969), 327–340 | DOI | MR | Zbl

[11] Volker Runde, Lectures on Amenability, Lecture Notes in Math., 1774, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl