The Taikov Functional in the Space of Algebraic Polynomials on the Multidimensional Euclidean Sphere
Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 532-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss three related extremal problems on the set $\mathscr P_{n,m}$ of algebraic polynomials of given degree $n$ on the unit sphere $\mathbb S^{m-1}$ of Euclidean space $\mathbb R^m$ of dimension $m\ge 2$. (1) The norm of the functional $F(h)=F_hP_n=\int_{\mathbb C(h)}P_n(x)\,dx$, which is equal to the integral over the spherical cap $\mathbb C(h)$ of angular radius $\operatorname{arccos} h$, $-1$, on the set $\mathscr P_{n,m}$ with the norm of the space $L(\mathbb S^{m-1})$ of summable functions on the sphere. (2) The best approximation in $L_\infty(\mathbb S^{m-1})$ of the characteristic function $\chi_h$ of the cap $\mathbb C(h)$ by the subspace $\mathscr P^\bot_{n,m}$ of functions from $L_\infty(\mathbb S^{m-1})$ that are orthogonal to the space of polynomials $\mathscr P_{n,m}$. (3) The best approximation in the space $L(\mathbb S^{m-1})$ of the function $\chi_h$ by the space of polynomials $\mathscr P_{n,m}$. We present the solution of all three problems for the value $h=t(n,m)$ which is the largest root of the polynomial in a single variable of degree $n+1$ least deviating from zero in the space $L_1^\phi$ on the interval $(-1,1)$ with ultraspheric weight $\phi(t)=(1-t^2)^\alpha$, $\alpha=(m-3)/2$.
Keywords: Taikov functional, Euclidean sphere, spherical cap, polynomial of least deviation, Hahn–Banach theorem, zonal function.
Mots-clés : algebraic polynomial, Lebesgue measure
@article{MZM_2008_84_4_a5,
     author = {M. V. Deikalova},
     title = {The {Taikov} {Functional} in the {Space} of {Algebraic} {Polynomials} on the {Multidimensional} {Euclidean} {Sphere}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {532--551},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a5/}
}
TY  - JOUR
AU  - M. V. Deikalova
TI  - The Taikov Functional in the Space of Algebraic Polynomials on the Multidimensional Euclidean Sphere
JO  - Matematičeskie zametki
PY  - 2008
SP  - 532
EP  - 551
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a5/
LA  - ru
ID  - MZM_2008_84_4_a5
ER  - 
%0 Journal Article
%A M. V. Deikalova
%T The Taikov Functional in the Space of Algebraic Polynomials on the Multidimensional Euclidean Sphere
%J Matematičeskie zametki
%D 2008
%P 532-551
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a5/
%G ru
%F MZM_2008_84_4_a5
M. V. Deikalova. The Taikov Functional in the Space of Algebraic Polynomials on the Multidimensional Euclidean Sphere. Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 532-551. http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a5/

[1] L. V. Taikov, “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, UMN, 20:3 (1965), 205–211 | MR | Zbl

[2] L. V. Taikov, “O nailuchshem priblizhenii yader Dirikhle”, Matem. zametki, 53:6 (1993), 116–121 | MR | Zbl

[3] M. V. Deikalova, “Nekotorye ekstremalnye zadachi dlya algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy VII mezhdunar. Kazanskoi letnei nauch. shkoly-konferentsii, Tr. matem. tsentra im. N. I. Lobachevskogo, 35, Izd-vo Kazansk. matem. ob-va, Kazan, 2007, 96–98

[4] M. V. Deikalova, “Neskolko ekstremalnykh zadach dlya algebraicheskikh mnogochlenov na sfere”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 14-i Saratovskoi zimnei shkoly, Izd-vo Saratov. un-ta, Saratov, 2008, 64–66

[5] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, URSS, M., 2004 | MR | Zbl

[6] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, t. 3, Izd-vo “Lan”, SPb, 1997 | MR | Zbl

[7] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[8] N. P. Koneichuk, Ekstremalnye zadachi teorii priblizheniya, GIFML, M., 1976 | MR

[9] I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977 | MR | Zbl

[10] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[11] A. G. Babenko, Yu. V. Kryakin, “O priblizhenii stupenchatykh funktsii trigonometricheskimi polinomami v integralnoi metrike”, Izv. TulGU. Matem. Mekh. Inform., 12:1 (2006), 27–56