Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_4_a5, author = {M. V. Deikalova}, title = {The {Taikov} {Functional} in the {Space} of {Algebraic} {Polynomials} on the {Multidimensional} {Euclidean} {Sphere}}, journal = {Matemati\v{c}eskie zametki}, pages = {532--551}, publisher = {mathdoc}, volume = {84}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a5/} }
TY - JOUR AU - M. V. Deikalova TI - The Taikov Functional in the Space of Algebraic Polynomials on the Multidimensional Euclidean Sphere JO - Matematičeskie zametki PY - 2008 SP - 532 EP - 551 VL - 84 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a5/ LA - ru ID - MZM_2008_84_4_a5 ER -
M. V. Deikalova. The Taikov Functional in the Space of Algebraic Polynomials on the Multidimensional Euclidean Sphere. Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 532-551. http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a5/
[1] L. V. Taikov, “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, UMN, 20:3 (1965), 205–211 | MR | Zbl
[2] L. V. Taikov, “O nailuchshem priblizhenii yader Dirikhle”, Matem. zametki, 53:6 (1993), 116–121 | MR | Zbl
[3] M. V. Deikalova, “Nekotorye ekstremalnye zadachi dlya algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy VII mezhdunar. Kazanskoi letnei nauch. shkoly-konferentsii, Tr. matem. tsentra im. N. I. Lobachevskogo, 35, Izd-vo Kazansk. matem. ob-va, Kazan, 2007, 96–98
[4] M. V. Deikalova, “Neskolko ekstremalnykh zadach dlya algebraicheskikh mnogochlenov na sfere”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tez. dokl. 14-i Saratovskoi zimnei shkoly, Izd-vo Saratov. un-ta, Saratov, 2008, 64–66
[5] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, URSS, M., 2004 | MR | Zbl
[6] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, t. 3, Izd-vo “Lan”, SPb, 1997 | MR | Zbl
[7] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl
[8] N. P. Koneichuk, Ekstremalnye zadachi teorii priblizheniya, GIFML, M., 1976 | MR
[9] I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977 | MR | Zbl
[10] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl
[11] A. G. Babenko, Yu. V. Kryakin, “O priblizhenii stupenchatykh funktsii trigonometricheskimi polinomami v integralnoi metrike”, Izv. TulGU. Matem. Mekh. Inform., 12:1 (2006), 27–56