Integrals over Polytopes, Multiple Zeta Values and Polylogarithms, and Euler's Constant
Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 609-626.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be the triangle with vertices $(1,0)$, $(0,1)$, $(1,1)$. We study certain integrals over $T$, one of which was computed by Euler. We give expressions for them both as linear combinations of multiple zeta values, and as polynomials in single zeta values. We obtain asymptotic expansions of the integrals, and of sums of certain multiple zeta values with constant weight. We also give related expressions for Euler's constant, and study integrals, one of which is the iterated Chen (Drinfeld–Kontsevich) integral, over some polytopes that are higher-dimensional analogs of $T$. The latter leads to a relation between certain multiple polylogarithm values and multiple zeta values.
Keywords: polytope, multiple zeta value, Riemann's zeta function, algebraic independence of numbers, Abel summability, gamma function, meromorphic function.
Mots-clés : polylogarithm
@article{MZM_2008_84_4_a12,
     author = {J. Sondow and S. A. Zlobin},
     title = {Integrals over {Polytopes,} {Multiple} {Zeta} {Values} and {Polylogarithms,} and {Euler's} {Constant}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {609--626},
     publisher = {mathdoc},
     volume = {84},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a12/}
}
TY  - JOUR
AU  - J. Sondow
AU  - S. A. Zlobin
TI  - Integrals over Polytopes, Multiple Zeta Values and Polylogarithms, and Euler's Constant
JO  - Matematičeskie zametki
PY  - 2008
SP  - 609
EP  - 626
VL  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a12/
LA  - ru
ID  - MZM_2008_84_4_a12
ER  - 
%0 Journal Article
%A J. Sondow
%A S. A. Zlobin
%T Integrals over Polytopes, Multiple Zeta Values and Polylogarithms, and Euler's Constant
%J Matematičeskie zametki
%D 2008
%P 609-626
%V 84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a12/
%G ru
%F MZM_2008_84_4_a12
J. Sondow; S. A. Zlobin. Integrals over Polytopes, Multiple Zeta Values and Polylogarithms, and Euler's Constant. Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 609-626. http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a12/

[1] P. Cartier, “Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents”, Astérisque, 282{, Exp. No 885} (2002), 137–173 | MR | Zbl

[2] W. Dunham, Euler: The Master of Us All, Dolciani Math. Exp., 22, Mathematical Association of America, Washington, DC, 1999 | MR | Zbl

[3] S. Zlobin, On a certain integral over a triangle, arXiv: math.NT/0511239

[4] F. Beukers, “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11:3 (1979), 268–272 | DOI | MR | Zbl

[5] K. S. Kölbig, J. A. Mignaco, E. Remiddi, “On Nielsen's generalized polylogarithms and their numerical calculation”, Nordisk Tidskr. Informationsbehandling (BIT), 10:1 (1970), 38–73 | DOI | MR | Zbl

[6] J. M. Borwein, D. M. Bradley, D. J. Broadhurst, “Evaluations of $k$-fold Euler/Zagier sums: a compendium of results for arbitrary $k$”, Research paper R5, Electron. J. Combin., 4:2 (1997) | MR | Zbl

[7] M. Waldschmidt, “Multiple polylogarithms: an introduction”, Number Theory and Discrete Mathematics, Proc. Int. Conf. held at Panjab University (Panjab University, Chandigarh, October 2–6, 2000), Trends Math., eds. A. K. Agarwal et al., Birkhäuser Verlag, Basel, 2002, 1–12 | MR | Zbl

[8] J. Sondow, “Criteria for irrationality of Euler's constant”, Proc. Amer. Math. Soc., 131:11 (2003), 3335–3344 | DOI | MR | Zbl

[9] J. Sondow, “Double integrals for Euler's constant and $\ln 4/\pi$ and an analog of Hadjicostas's formula”, Amer. Math. Monthly, 112:1 (2005), 61–65 | MR | Zbl

[10] J. Ser, “Sur une expression de la fonction $\zeta(s)$ de Riemann”, C. R. Acad. Sci. Paris Sér. I. Math., 182 (1926), 1075–1077 | Zbl

[11] J. Sondow, An infinite product for $e^\gamma$ via hypergeometric formulas for Euler's constant, $\gamma$, , 2003 arXiv: math.CA/0306008

[12] J. Sondow, “A faster product for $\pi$ and a new integral for $\ln\pi/2$”, Amer. Math. Monthly, 112:8 (2005), 729–734 | MR | Zbl

[13] B. C. Berndt, Ramanujan's Notebooks, part I, Springer-Verlag, New York, 1985 | MR | Zbl

[14] N. G. de Bruijn, Asymptotic Methods in Analysis, Dover Publ., New York, 1981 | MR | Zbl

[15] S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego, 2000 | MR | Zbl

[16] L. Lewin, Polylogarithms and Associated Functions, North-Holland Publ., New York, 1981 | MR | Zbl

[17] J. M. Borwein, D. M. Bradley, D. J. Broadhurst, P. Lisonek, “Special values of multiple polylogarithms”, Trans. Amer. Math. Soc., 353:3 (2001), 907–941 | DOI | MR | Zbl