Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_4_a12, author = {J. Sondow and S. A. Zlobin}, title = {Integrals over {Polytopes,} {Multiple} {Zeta} {Values} and {Polylogarithms,} and {Euler's} {Constant}}, journal = {Matemati\v{c}eskie zametki}, pages = {609--626}, publisher = {mathdoc}, volume = {84}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a12/} }
TY - JOUR AU - J. Sondow AU - S. A. Zlobin TI - Integrals over Polytopes, Multiple Zeta Values and Polylogarithms, and Euler's Constant JO - Matematičeskie zametki PY - 2008 SP - 609 EP - 626 VL - 84 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a12/ LA - ru ID - MZM_2008_84_4_a12 ER -
J. Sondow; S. A. Zlobin. Integrals over Polytopes, Multiple Zeta Values and Polylogarithms, and Euler's Constant. Matematičeskie zametki, Tome 84 (2008) no. 4, pp. 609-626. http://geodesic.mathdoc.fr/item/MZM_2008_84_4_a12/
[1] P. Cartier, “Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents”, Astérisque, 282{, Exp. No 885} (2002), 137–173 | MR | Zbl
[2] W. Dunham, Euler: The Master of Us All, Dolciani Math. Exp., 22, Mathematical Association of America, Washington, DC, 1999 | MR | Zbl
[3] S. Zlobin, On a certain integral over a triangle, arXiv: math.NT/0511239
[4] F. Beukers, “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11:3 (1979), 268–272 | DOI | MR | Zbl
[5] K. S. Kölbig, J. A. Mignaco, E. Remiddi, “On Nielsen's generalized polylogarithms and their numerical calculation”, Nordisk Tidskr. Informationsbehandling (BIT), 10:1 (1970), 38–73 | DOI | MR | Zbl
[6] J. M. Borwein, D. M. Bradley, D. J. Broadhurst, “Evaluations of $k$-fold Euler/Zagier sums: a compendium of results for arbitrary $k$”, Research paper R5, Electron. J. Combin., 4:2 (1997) | MR | Zbl
[7] M. Waldschmidt, “Multiple polylogarithms: an introduction”, Number Theory and Discrete Mathematics, Proc. Int. Conf. held at Panjab University (Panjab University, Chandigarh, October 2–6, 2000), Trends Math., eds. A. K. Agarwal et al., Birkhäuser Verlag, Basel, 2002, 1–12 | MR | Zbl
[8] J. Sondow, “Criteria for irrationality of Euler's constant”, Proc. Amer. Math. Soc., 131:11 (2003), 3335–3344 | DOI | MR | Zbl
[9] J. Sondow, “Double integrals for Euler's constant and $\ln 4/\pi$ and an analog of Hadjicostas's formula”, Amer. Math. Monthly, 112:1 (2005), 61–65 | MR | Zbl
[10] J. Ser, “Sur une expression de la fonction $\zeta(s)$ de Riemann”, C. R. Acad. Sci. Paris Sér. I. Math., 182 (1926), 1075–1077 | Zbl
[11] J. Sondow, An infinite product for $e^\gamma$ via hypergeometric formulas for Euler's constant, $\gamma$, , 2003 arXiv: math.CA/0306008
[12] J. Sondow, “A faster product for $\pi$ and a new integral for $\ln\pi/2$”, Amer. Math. Monthly, 112:8 (2005), 729–734 | MR | Zbl
[13] B. C. Berndt, Ramanujan's Notebooks, part I, Springer-Verlag, New York, 1985 | MR | Zbl
[14] N. G. de Bruijn, Asymptotic Methods in Analysis, Dover Publ., New York, 1981 | MR | Zbl
[15] S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego, 2000 | MR | Zbl
[16] L. Lewin, Polylogarithms and Associated Functions, North-Holland Publ., New York, 1981 | MR | Zbl
[17] J. M. Borwein, D. M. Bradley, D. J. Broadhurst, P. Lisonek, “Special values of multiple polylogarithms”, Trans. Amer. Math. Soc., 353:3 (2001), 907–941 | DOI | MR | Zbl