Selection Principle for Pointwise Bounded Sequences of Functions
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 428-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a number $\varepsilon>0$ and a real function $f$ on an interval $[a,b]$, denote by $N(\varepsilon,f,[a,b])$ the least upper bound of the set of indices $n$ for which there is a family of disjoint intervals $[a_i,b_i]$, $i=1,\dots,n$, on $[a,b]$ such that $|f(a_i)-f(b_i)|>\varepsilon$ for any $i=1,\dots,n$ ($\sup\varnothing=0$). The following theorem is proved: \emph{if $\{f_j\}$ is a pointwise bounded sequence of real functions on the interval $[a,b]$ such that $n(\varepsilon)\equiv\limsup_{j\to\infty}N(\varepsilon,f_j,[a,b])\infty$ for any $\varepsilon>0$, then the sequence $\{f_j\}$ contains a subsequence which converges, everywhere on $[a,b]$, to some function $f$ such that $N(\varepsilon,f,[a,b])\le n(\varepsilon)$ for any $\varepsilon>0$}. It is proved that the main condition in this theorem related to the upper limit is necessary for any uniformly convergent sequence $\{f_j\}$ and is “almost” necessary for any everywhere convergent sequence of measurable functions, and many pointwise selection principles generalizing Helly's classical theorem are consequences of our theorem. Examples are presented which illustrate the sharpness of the theorem.
Keywords: Helly's selection theorem, pointwise bounded function sequence, pointwise selection principle, measurable function, Cauchy sequence
Mots-clés : Jordan variation.
@article{MZM_2008_84_3_a9,
     author = {Yu. V. Tretyachenko and V. V. Chistyakov},
     title = {Selection {Principle} for {Pointwise} {Bounded} {Sequences} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {428--439},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a9/}
}
TY  - JOUR
AU  - Yu. V. Tretyachenko
AU  - V. V. Chistyakov
TI  - Selection Principle for Pointwise Bounded Sequences of Functions
JO  - Matematičeskie zametki
PY  - 2008
SP  - 428
EP  - 439
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a9/
LA  - ru
ID  - MZM_2008_84_3_a9
ER  - 
%0 Journal Article
%A Yu. V. Tretyachenko
%A V. V. Chistyakov
%T Selection Principle for Pointwise Bounded Sequences of Functions
%J Matematičeskie zametki
%D 2008
%P 428-439
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a9/
%G ru
%F MZM_2008_84_3_a9
Yu. V. Tretyachenko; V. V. Chistyakov. Selection Principle for Pointwise Bounded Sequences of Functions. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 428-439. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a9/

[1] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR | Zbl

[2] R. M. Dudley, R. Norvaiša, Differentiability of Six Operators on Nonsmooth Functions and $p$-Variation, With the collaboration of Jinghua Qian, Lecture Notes in Math., 1703, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl

[3] S. Gniłka, “On the generalized Helly's theorem”, Funct. Approximatio Comment. Math., 4 (1976), 109–112 | MR | Zbl

[4] J. Musielak, W. Orlicz, “On generalized variations. I”, Studia Math., 18 (1959), 11–41 | MR | Zbl

[5] V. V. Chistyakov, “O mnogoznachnykh otobrazheniyakh konechnoi obobschennoi variatsii”, Matem. zametki, 71:4 (2002), 611–632 | MR | Zbl

[6] V. V. Chistyakov, “Selections of bounded variation”, J. Appl. Anal., 10:1 (2004), 1–82 | MR | Zbl

[7] V. V. Chistyakov, “A selection principle for functions of a real variable”, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 53:1 (2005), 25–43 | MR | Zbl

[8] M. Schramm, “Functions of $\Phi$-bounded variation and Riemann–Stieltjes integration”, Trans. Amer. Math. Soc., 287:1 (1985), 49–63 | DOI | MR | Zbl

[9] D. Waterman, “On $\Lambda$-bounded variation”, Studia Math., 57:1 (1976), 33–45 | MR | Zbl

[10] V. V. Chistyakov, “The optimal form of selection principles for functions of a real variable”, J. Math. Anal. Appl., 310:2 (2005), 609–625 | MR | Zbl

[11] V. V. Chistyakov, “Printsip vybora dlya funktsii so znacheniyami v ravnomernom prostranstve”, Dokl. RAN, 409:5 (2006), 591–593 | MR | Zbl

[12] V. V.Chistyakov, “Potochechnyi printsip vybora dlya funktsii odnoi peremennoi so znacheniyami v ravnomernom prostranstve”, Matem. tr., 9:1 (2006), 176–204 | MR

[13] Z. A. Chanturiya, “Modul izmeneniya funktsii i ego primeneniya v teorii ryadov Fure”, Dokl. AN SSSR, 214:1 (1974), 63–66 | MR | Zbl

[14] K. Schrader, “A generalization of the Helly selection theorem”, Bull. Amer. Math. Soc., 78:3 (1972), 415–419 | DOI | MR | Zbl

[15] L. Di Piazza, C. Maniscalco, “Selection theorems, based on generalized variation and oscillation”, Rend. Circ. Mat. Palermo (2), 35:3 (1986), 386–396 | DOI | MR | Zbl

[16] C. Maniscalco, “A comparison of three recent selection theorems”, Math. Bohem., 132:2 (2007), 177–183 | MR