Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_3_a6, author = {A. M. Sinev}, title = {The {Stochastic} {Baker--Hausdorff} {Formula} and {Its} {Applications} to {Quantum} {Relaxation} {Processes}}, journal = {Matemati\v{c}eskie zametki}, pages = {395--408}, publisher = {mathdoc}, volume = {84}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a6/} }
A. M. Sinev. The Stochastic Baker--Hausdorff Formula and Its Applications to Quantum Relaxation Processes. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 395-408. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a6/
[1] C. W. Gardiner, P. Zoller, Quantum Noise, A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, Springer Ser. Synergetics, Springer-Verlag, Berlin, 2004 | MR | Zbl
[2] H. J. Carmichael, An Open System Approach to Quantum Optics, Lecture Notes in Phys. Monogr. Ser., 18, Springer-Verlag, Berlin, 1993
[3] G. Lindblad, “On generators of quantum dynamical semigroups”, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR
[4] R. Schack, T. A. Brun, “A C++ library using quantum trajectories to solve quantum master equations”, Comp. Phys. Comm., 102:1 (1997), 210–228 ; arXiv: quant-ph/9608004 | DOI
[5] A. D. Venttsel, M. I. Freidlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Teoriya veroyatn. i matem. stat., Nauka, M., 1979 | MR | Zbl
[6] I. V. Girsanov, “O preobrazovanii odnogo klassa sluchainykh protsessov s pomoschyu absolyutno nepreryvnoi zameny mery”, TVP, 5:3 (1960), 314–330 | MR | Zbl
[7] B.-G. Englert, G. Morigi, “Five Lectures On Dissipative Master Equations”, Coherent Evolution in Noisy Environments (Dresden, 2001), Lecture Notes in Phys., 611, 2002, 55–106 | MR
[8] W. T. Strunz, Ting Yu, “Convolutionless Non-Markovian master equations and quantum trajectories: Brownian motion revisited”, art. 052115, Phys. Rev. A, 69:5 (2004) | DOI