The Stochastic Baker--Hausdorff Formula and Its Applications to Quantum Relaxation Processes
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 395-408.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the stochastic analog of the Baker–Hausdorff formula for operators satisfying the canonical commutation relations. This formula can be used to obtain an exact solution to the problem of the dynamics of a quantum system interacting with the environment.
Keywords: stochastic Baker–Hausdorff formula, quantum relaxation process, Wiener process, Radon–Nikodym derivative.
Mots-clés : Ito formula, diffusion process, Riccati equation
@article{MZM_2008_84_3_a6,
     author = {A. M. Sinev},
     title = {The {Stochastic} {Baker--Hausdorff} {Formula} and {Its} {Applications} to {Quantum} {Relaxation} {Processes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {395--408},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a6/}
}
TY  - JOUR
AU  - A. M. Sinev
TI  - The Stochastic Baker--Hausdorff Formula and Its Applications to Quantum Relaxation Processes
JO  - Matematičeskie zametki
PY  - 2008
SP  - 395
EP  - 408
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a6/
LA  - ru
ID  - MZM_2008_84_3_a6
ER  - 
%0 Journal Article
%A A. M. Sinev
%T The Stochastic Baker--Hausdorff Formula and Its Applications to Quantum Relaxation Processes
%J Matematičeskie zametki
%D 2008
%P 395-408
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a6/
%G ru
%F MZM_2008_84_3_a6
A. M. Sinev. The Stochastic Baker--Hausdorff Formula and Its Applications to Quantum Relaxation Processes. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 395-408. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a6/

[1] C. W. Gardiner, P. Zoller, Quantum Noise, A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, Springer Ser. Synergetics, Springer-Verlag, Berlin, 2004 | MR | Zbl

[2] H. J. Carmichael, An Open System Approach to Quantum Optics, Lecture Notes in Phys. Monogr. Ser., 18, Springer-Verlag, Berlin, 1993

[3] G. Lindblad, “On generators of quantum dynamical semigroups”, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR

[4] R. Schack, T. A. Brun, “A C++ library using quantum trajectories to solve quantum master equations”, Comp. Phys. Comm., 102:1 (1997), 210–228 ; arXiv: quant-ph/9608004 | DOI

[5] A. D. Venttsel, M. I. Freidlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Teoriya veroyatn. i matem. stat., Nauka, M., 1979 | MR | Zbl

[6] I. V. Girsanov, “O preobrazovanii odnogo klassa sluchainykh protsessov s pomoschyu absolyutno nepreryvnoi zameny mery”, TVP, 5:3 (1960), 314–330 | MR | Zbl

[7] B.-G. Englert, G. Morigi, “Five Lectures On Dissipative Master Equations”, Coherent Evolution in Noisy Environments (Dresden, 2001), Lecture Notes in Phys., 611, 2002, 55–106 | MR

[8] W. T. Strunz, Ting Yu, “Convolutionless Non-Markovian master equations and quantum trajectories: Brownian motion revisited”, art. 052115, Phys. Rev. A, 69:5 (2004) | DOI