On an Inequality in Lebesgue Space with Mixed Norm and with Variable Summability Exponent
Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 323-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal in this paper is to obtain an analog of the generalized Minkowski inequality and an embedding between the Lebesgue spaces with mixed norm and with variable summability exponent.
Keywords: Lebesgue space with mixed norm, Lebesgue space with variable summability exponent, measurable function, Banach space, Euclidean space
Mots-clés : Lebesgue measurable set.
@article{MZM_2008_84_3_a0,
     author = {R. A. Bandaliev},
     title = {On an {Inequality} in {Lebesgue} {Space} with {Mixed} {Norm} and with {Variable} {Summability} {Exponent}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--333},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a0/}
}
TY  - JOUR
AU  - R. A. Bandaliev
TI  - On an Inequality in Lebesgue Space with Mixed Norm and with Variable Summability Exponent
JO  - Matematičeskie zametki
PY  - 2008
SP  - 323
EP  - 333
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a0/
LA  - ru
ID  - MZM_2008_84_3_a0
ER  - 
%0 Journal Article
%A R. A. Bandaliev
%T On an Inequality in Lebesgue Space with Mixed Norm and with Variable Summability Exponent
%J Matematičeskie zametki
%D 2008
%P 323-333
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a0/
%G ru
%F MZM_2008_84_3_a0
R. A. Bandaliev. On an Inequality in Lebesgue Space with Mixed Norm and with Variable Summability Exponent. Matematičeskie zametki, Tome 84 (2008) no. 3, pp. 323-333. http://geodesic.mathdoc.fr/item/MZM_2008_84_3_a0/

[1] I. I. Sharapudinov, “O topologii prostranstva $\mathscr L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl

[2] O. Kováčik, J. Rákosník, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | MR | Zbl

[3] S. G. Samko, “Convolution type operators in $L^{p(x)}$”, Integral Transform. Spec. Funct., 7:1–2 (1998), 123–144 | DOI | MR | Zbl

[4] I. I. Sharapudinov, “O bazisnosti sistemy Khaara v prostranstve $\mathscr L^{p(t)}([0,1])$ i printsipe lokalizatsii v srednem”, Matem. sb., 130:2 (1986), 275–283 | MR | Zbl

[5] I. I. Sharapudinov, “O ravnomernoi ogranichennosti v $L^p$ ($p=p(x)$) nekotorykh semeistv operatorov svertki”, Matem. zametki, 59:2 (1996), 291–302 | MR | Zbl

[6] V. V. Zhikov, “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 675–710 | MR | Zbl

[7] Růžička M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., 1748, Springer–Verlag, Berlin, 2000 | MR | Zbl

[8] R. A. Bandaliev, “O prostranstve $L_{(p_1(x),p_2(x^2),\dots,p_n(x_n))}(R^n)$ so smeshannoi normoi”, Tez. X mezhdunar. konf. v oblasti matem. i mekh., posvyasch. 45-letiyu In-ta matem. i mekh. NAN Azerbaidzhana, Baku, 2004, 38

[9] R. A. Bandaliyev, “On an inequality in the variable Lebesgue space with mixed norm”, Trans. Acad. Sci. Azerbaijan. Math. and Mech., 26:7 (2006), 133–145

[10] A. Benedek, R. Panzone, “The spaces $L_p$, with mixed norm”, Duke Math. J., 28:3 (1961), 302–324 | DOI | MR | Zbl

[11] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[12] S. M. Nikolskii, “Ob odnoi zadache S. L. Soboleva”, Sib. matem. zhurn., 3:6 (1962), 845–851 | MR | Zbl

[13] S. G. Samko, “Differentiation and integration of variable order and the spaces $L^{p(x)}$”, Operator Theory for Complex and Hypercomplex Analysis, Proc. of a conf. (Mexico City, 1994), Contemp. Math., 212, 1998, 203–219 | MR | Zbl

[14] R. A. Bandaliev, “Dvukhvesovye neravenstva dlya svertochnykh operatorov v prostranstve Lebega”, Matem. zametki, 80:1 (2006), 3–10 | MR | Zbl