On the Strong Solutions of a Regularized Model of a Nonlinear Visco-Elastic Medium
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 238-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the initial boundary-value problem for the system of equations describing the motion of a nonlinear visco-elastic medium with memory along the trajectories of the velocity field; the system in question is a generalization of the system of Navier–Stokes equations. We establish existence and uniqueness theorems for strong solutions containing higher derivatives that are square-integrable in the plane case.
Keywords: nonlinear visco-elastic medium, Navier–Stokes equations, initial boundary-value problem, existence and uniqueness theorem, regularization, Sobolev space.
@article{MZM_2008_84_2_a6,
     author = {V. P. Orlov},
     title = {On the {Strong} {Solutions} of a {Regularized} {Model} of a {Nonlinear} {Visco-Elastic} {Medium}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {238--253},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a6/}
}
TY  - JOUR
AU  - V. P. Orlov
TI  - On the Strong Solutions of a Regularized Model of a Nonlinear Visco-Elastic Medium
JO  - Matematičeskie zametki
PY  - 2008
SP  - 238
EP  - 253
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a6/
LA  - ru
ID  - MZM_2008_84_2_a6
ER  - 
%0 Journal Article
%A V. P. Orlov
%T On the Strong Solutions of a Regularized Model of a Nonlinear Visco-Elastic Medium
%J Matematičeskie zametki
%D 2008
%P 238-253
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a6/
%G ru
%F MZM_2008_84_2_a6
V. P. Orlov. On the Strong Solutions of a Regularized Model of a Nonlinear Visco-Elastic Medium. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 238-253. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a6/

[1] V. P. Orlov, P. E. Sobolevskii, “O gladkosti obobschennykh reshenii uravnenii dvizheniya pochti nyutonovskoi zhidkosti”, Chisl. metody mekh. sploshn. sredy, 16:1 (1985), 107–119 | MR | Zbl

[2] V. P. Orlov, P. E. Sobolevskii, “On mathematical models of a viscoelasticity with a memory”, Differential Integral Equations, 4:1 (1991), 103–115 | MR | Zbl

[3] V. T. Dmitrienko, V. G. Zvyagin, “O silnykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli neszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matem., 2004, no. 9, 24–40 | MR

[4] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR | Zbl

[5] P. Temam, Uravnenie Nave–Stoksa: Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[6] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[7] X. Tribel, Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR | Zbl

[8] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl

[9] P. E. Sobolevskii, “Neravenstva koertsitivnosti dlya abstraktnykh parabolicheskikh uravnenii”, Dokl. AN SSSR, 157 (1964), 52–55 | MR | Zbl

[10] V. G. Litvinov, Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR | Zbl