Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_2_a6, author = {V. P. Orlov}, title = {On the {Strong} {Solutions} of a {Regularized} {Model} of a {Nonlinear} {Visco-Elastic} {Medium}}, journal = {Matemati\v{c}eskie zametki}, pages = {238--253}, publisher = {mathdoc}, volume = {84}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a6/} }
V. P. Orlov. On the Strong Solutions of a Regularized Model of a Nonlinear Visco-Elastic Medium. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 238-253. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a6/
[1] V. P. Orlov, P. E. Sobolevskii, “O gladkosti obobschennykh reshenii uravnenii dvizheniya pochti nyutonovskoi zhidkosti”, Chisl. metody mekh. sploshn. sredy, 16:1 (1985), 107–119 | MR | Zbl
[2] V. P. Orlov, P. E. Sobolevskii, “On mathematical models of a viscoelasticity with a memory”, Differential Integral Equations, 4:1 (1991), 103–115 | MR | Zbl
[3] V. T. Dmitrienko, V. G. Zvyagin, “O silnykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli neszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matem., 2004, no. 9, 24–40 | MR
[4] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR | Zbl
[5] P. Temam, Uravnenie Nave–Stoksa: Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl
[6] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl
[7] X. Tribel, Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980 | MR | Zbl
[8] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl
[9] P. E. Sobolevskii, “Neravenstva koertsitivnosti dlya abstraktnykh parabolicheskikh uravnenii”, Dokl. AN SSSR, 157 (1964), 52–55 | MR | Zbl
[10] V. G. Litvinov, Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR | Zbl