On an Integral Inequality and Its Application to the Proof of the Entropy Inequality
Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 231-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp integral inequality is proved, and it is applied to the proof the entropy inequality.
Keywords: integral inequality, entropy inequality, Euler gamma function, Euler beta function, Hölder–Young inequality, Schrödinger equation.
@article{MZM_2008_84_2_a5,
     author = {Sh. M. Nasibov},
     title = {On an {Integral} {Inequality} and {Its} {Application} to the {Proof} of the {Entropy} {Inequality}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {231--237},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a5/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - On an Integral Inequality and Its Application to the Proof of the Entropy Inequality
JO  - Matematičeskie zametki
PY  - 2008
SP  - 231
EP  - 237
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a5/
LA  - ru
ID  - MZM_2008_84_2_a5
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T On an Integral Inequality and Its Application to the Proof of the Entropy Inequality
%J Matematičeskie zametki
%D 2008
%P 231-237
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a5/
%G ru
%F MZM_2008_84_2_a5
Sh. M. Nasibov. On an Integral Inequality and Its Application to the Proof of the Entropy Inequality. Matematičeskie zametki, Tome 84 (2008) no. 2, pp. 231-237. http://geodesic.mathdoc.fr/item/MZM_2008_84_2_a5/

[1] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenii k nelineinomu uravneniyu Shredingera”, Dokl. AN SSSR, 307:3 (1989), 538–542 | MR | Zbl

[2] Sh. M. Nasibov, “Odno nelineinoe uravnenie tipa Shredingera”, Differents. uravneniya, 16:4 (1980), 660–670 | MR | Zbl

[3] Yu. A. Dubinskii, “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, UMN, 23:1 (1968), 45–90 | MR | Zbl

[4] Zh. L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[5] B. v. Sz. Nagy, “Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung”, Acta Sci. Math. (Szeged), 10 (1941), 64–74 | MR | Zbl

[6] L. Nirenberg, “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115–162 | MR | Zbl

[7] E. Gagliardo, “Proprietà di alcune classi di funzioni in piu variabili”, Ricerche Mat., 7 (1958), 102–137 | MR | Zbl

[8] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl

[9] H. A. Levine, “An estimate for the best constant in a Sobolev inequality involving three integral norms”, Ann. Mat. Pura Appl. (4), 124:1 (1980), 181–197 | DOI | MR | Zbl

[10] E. J. M. Veling,, “Lower bounds for the infimum of the spectrum of the Schrodinger operator in $\mathbb R^N$ and the Sobolev inequalities”, art. 63, JIPAM. J. Inequal. Pure Appl. Math., 3:4 (2002) | MR | Zbl

[11] I. I. Hirschman, jr., “A note on entropy”, Amer. J. Math., 79:1 (1957), 152–156 | DOI | MR | Zbl